CS 188: Artificial Intelligence

Constraint Satisfaction Problems

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

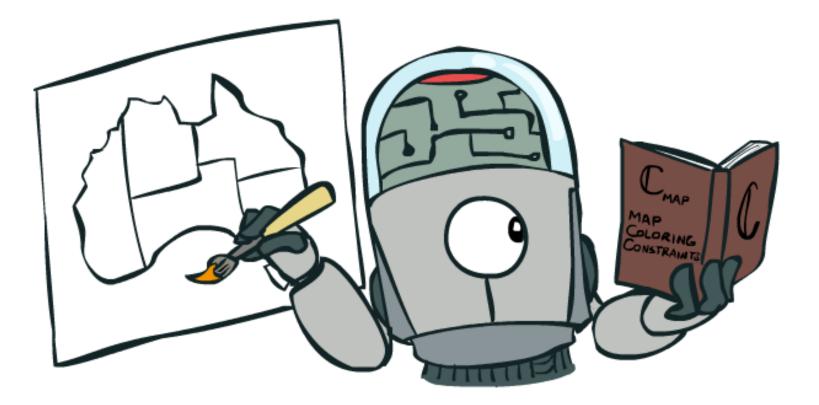
Announcements

- Homework 1 due today (Tuesday, Sept 10) at 11:59PM PT
- Project 1 due Friday, Sept 13 at 5:00PM PT
- Discussions start this week (times posted on course calendar)
- Project Parties:
 - Thursday, Sept 12 from 6:00PM to 8:00PM PT in Soda 341B
 - Friday, Sept 13 from 9:00AM to 2:00PM PT in Soda 341B
- Please do not use course staff personal emails for questions related to the course, email <u>cs188@Berkeley.edu</u> or post on Ed instead
- When posting (private) questions with code, either upload zip files of your code, or use code block functionality on Ed

What is Search For?

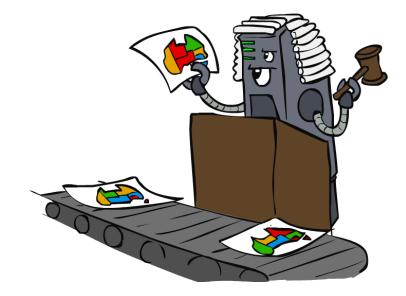
- Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space
- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics give problem-specific guidance
- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are a specialized class of identification problems

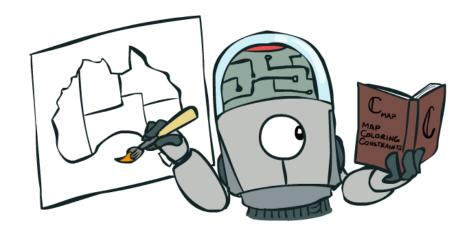
Constraint Satisfaction Problems



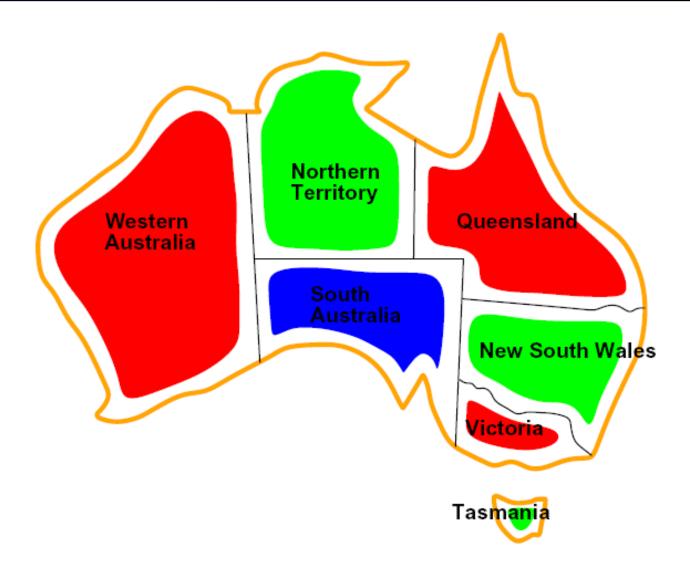
Constraint Satisfaction Problems

- Standard search problems:
 - State is a "black box": arbitrary data structure
 - Goal test can be any function over states
 - Successor function can also be anything
- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Simple example of a *formal representation language*
- Allows useful general-purpose algorithms with more power than standard search algorithms





CSP Examples



Example: Map Coloring

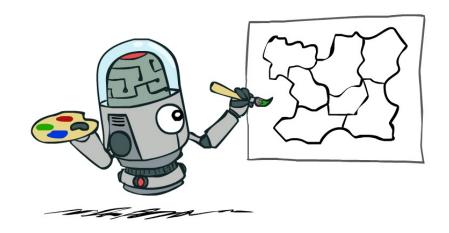
- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: D = {red, green, blue}
- Constraints: adjacent regions must have different colors

Implicit: $WA \neq NT$

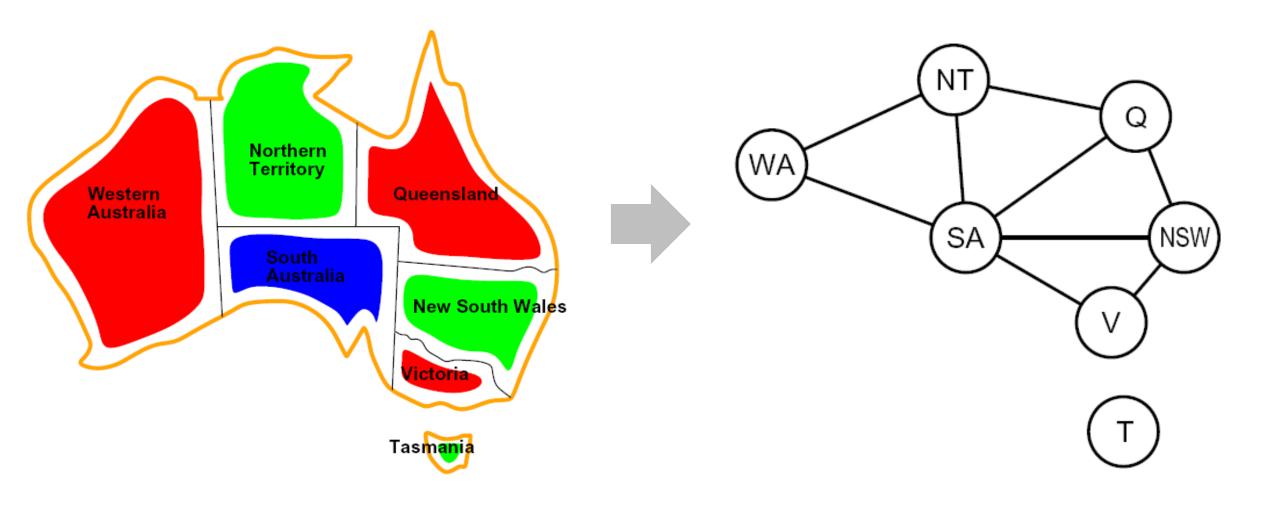
Explicit: $(WA, NT) \in \{(red, green), (red, blue), \ldots\}$

Solutions are assignments satisfying all constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}

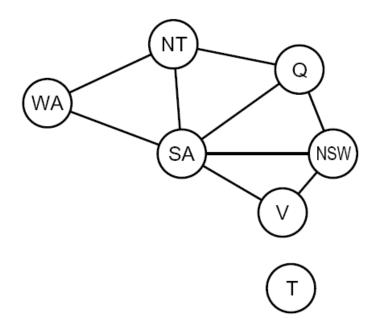


Constraint Graphs



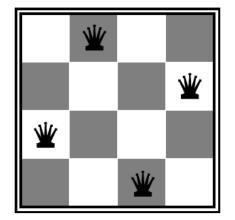
Constraint Graphs

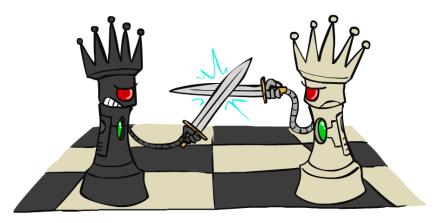
- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!



Example: N-Queens

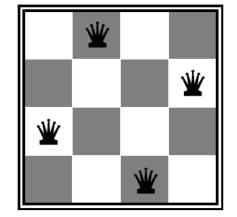
- Formulation 1:
 - Variables: *X_{ij}*
 - **Domains:** {0, 1}
 - Constraints

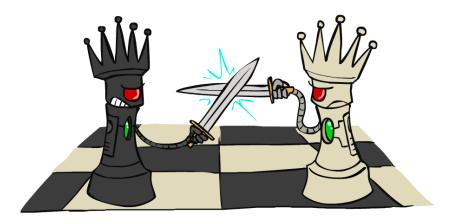




Example: N-Queens

- Formulation 1:
 - Variables: *X_{ij}*
 - Domains: {0, 1}
 - Constraints





 $\begin{aligned} \forall i, j, k \ (X_{ij}, X_{ik}) &\in \{(0, 0), (0, 1), (1, 0)\} \\ \forall i, j, k \ (X_{ij}, X_{kj}) &\in \{(0, 0), (0, 1), (1, 0)\} \\ \forall i, j, k \ (X_{ij}, X_{i+k,j+k}) &\in \{(0, 0), (0, 1), (1, 0)\} \\ \forall i, j, k \ (X_{ij}, X_{i+k,j-k}) &\in \{(0, 0), (0, 1), (1, 0)\} \end{aligned}$

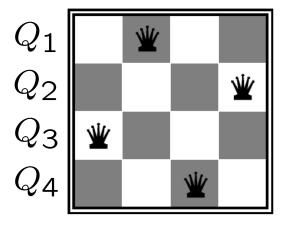
$$\sum_{i,j} X_{ij} = N$$

Example: N-Queens

- Formulation 2:
 - Variables: Q_k
 - Domains: $\{1, 2, 3, \dots N\}$
 - Constraints:

Implicit: $\forall i, j \text{ non-threatening}(Q_i, Q_j)$

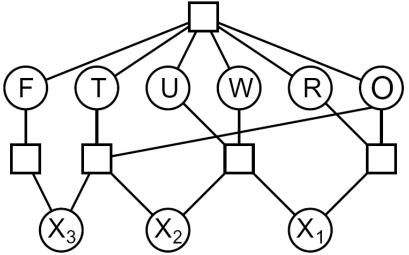
Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$



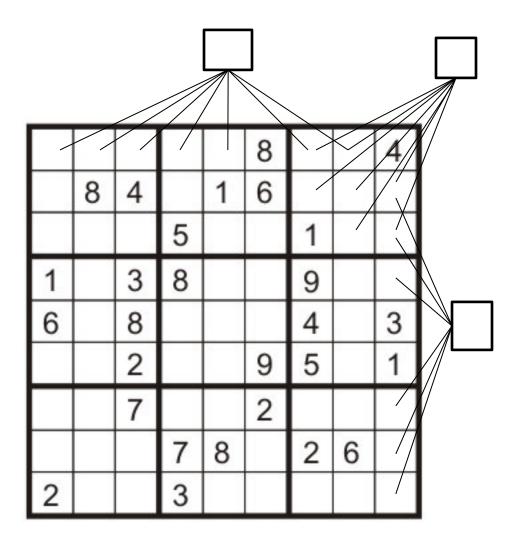
Example: Cryptarithmetic

- Variables:
 - $F T U W R O X_1 X_2 X_3$
- Domains:
 - $\{0,1,2,3,4,5,6,7,8,9\}$
- Constraints:
 - $\operatorname{alldiff}(F, T, U, W, R, O)$
 - $O + O = R + 10 \cdot X_1$

• • •



Example: Sudoku

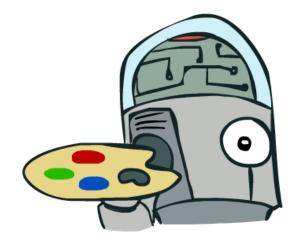


- Variables:
 - Each (open) square
- Domains:
 - {1,2,...,9}
- Constraints:
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region
 - (or can have a bunch of pairwise inequality constraints)

Varieties of CSPs and Constraints

Varieties of CSPs

- Discrete Variables
 - Finite domains
 - Size *d* means O(*dⁿ*) complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NPcomplete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable
- Continuous variables
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods (see cs170 for a bit of this theory)



Varieties of Constraints

- Varieties of Constraints
 - Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

 $SA \neq green$

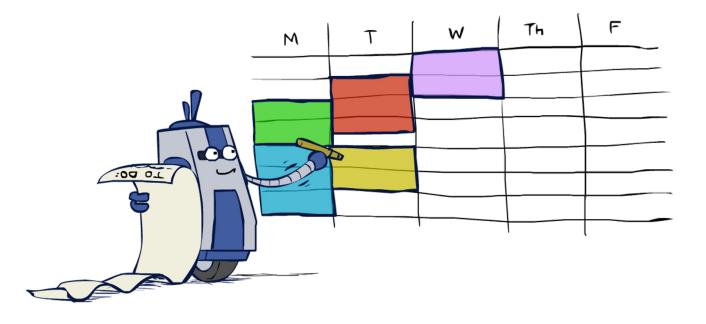
Binary constraints involve pairs of variables, e.g.:

 $SA \neq WA$

- Higher-order constraints involve 3 or more variables: e.g., cryptarithmetic column constraints
- Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We'll ignore these until we get to Bayes' nets)

Real-World CSPs

- Scheduling problems: e.g., when can we all meet?
- Timetabling problems: e.g., which class is offered when and where?
- Assignment problems: e.g., who teaches what class
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Circuit layout
- Fault diagnosis
- Interpretended in the second secon

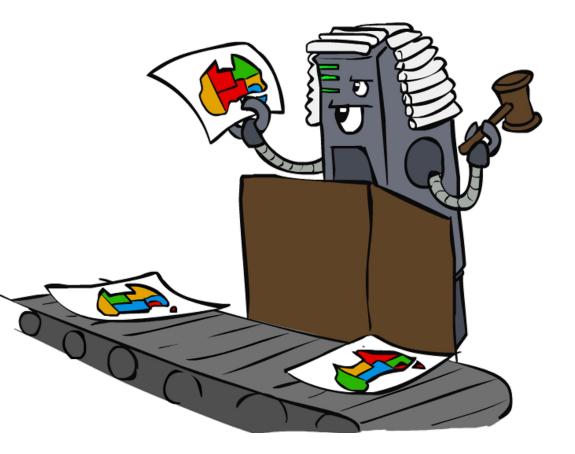


Many real-world problems involve real-valued variables...

Solving CSPs

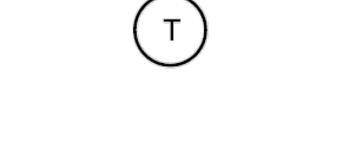
Standard Search Formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints
- We'll start with the straightforward, naïve approach, then improve it



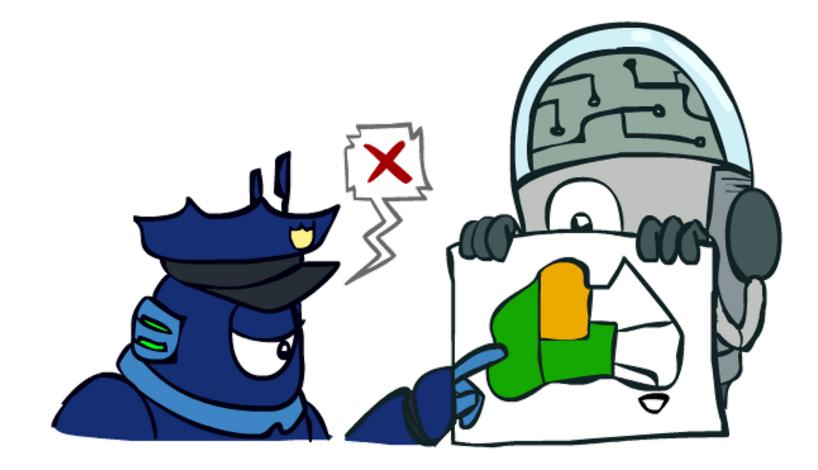
Search Methods

- What would BFS do?
 What would DFS do?
 - What problems does naïve search have?



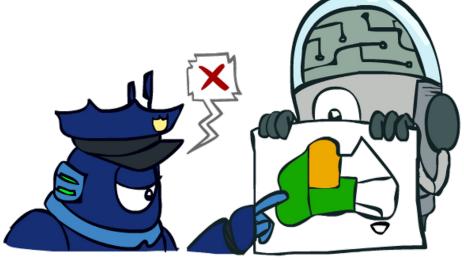
[Demo: coloring -- dfs]

Backtracking Search

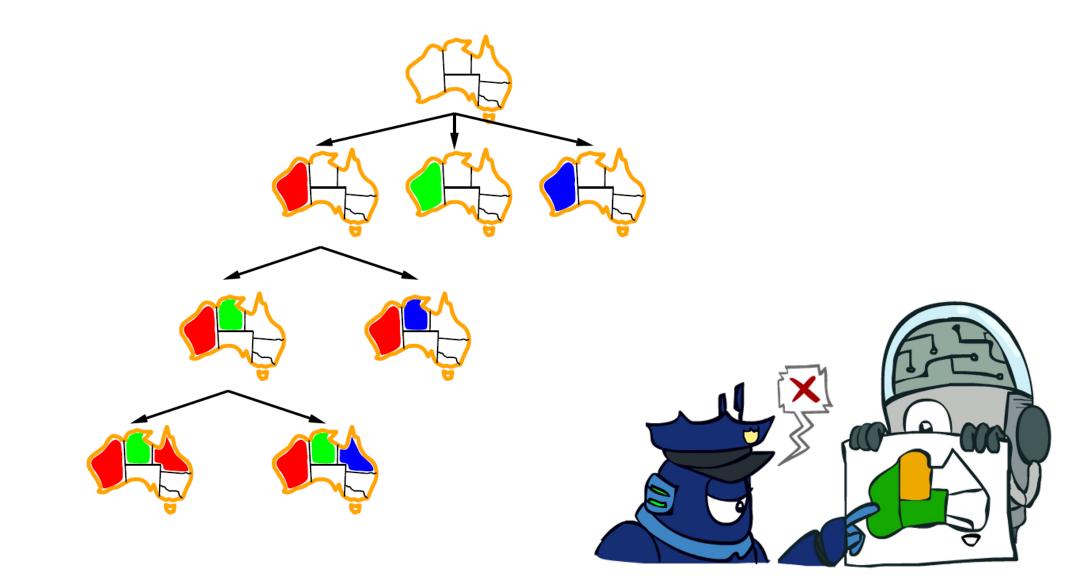


Backtracking Search

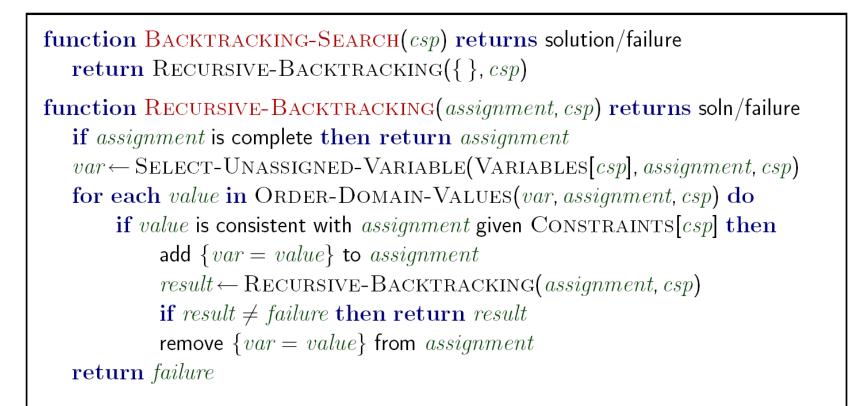
- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea 1: One variable at a time
 - Variable assignments are commutative, so fix ordering
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
 - I.e. consider only values which do not conflict with previous assignments
 - Might have to do some computation to check the constraints
 - "Incremental goal test"
- Depth-first search with these two improvements is called *backtracking search* (not the best name)
- Can solve n-queens for $n \approx 25$



Backtracking Example



Backtracking Search



- Backtracking = DFS + variable-ordering + fail-on-violation
- What are the choice points?

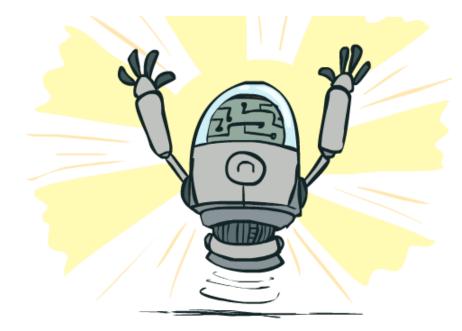
[Demo: coloring -- backtracking]

Improving Backtracking

- General-purpose ideas give huge gains in speed
- Filtering: Can we detect inevitable failure early?

• Ordering:

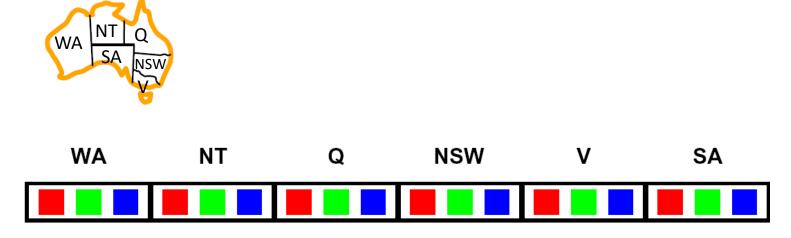
- Which variable should be assigned next?
- In what order should its values be tried?
- Structure: Can we exploit the problem structure?



Filtering

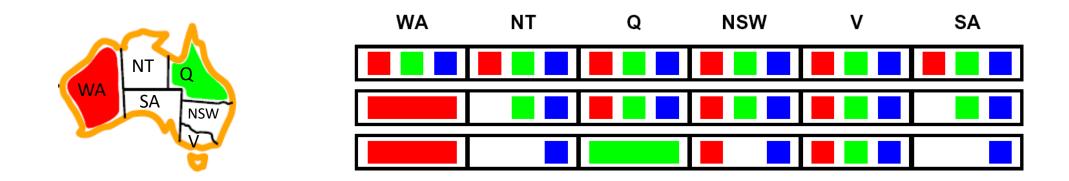
Filtering: Forward Checking

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment



Filtering: Constraint Propagation

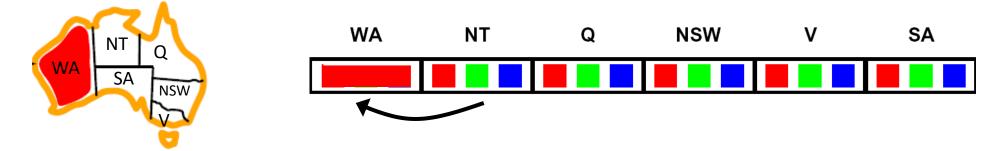
 Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:



- NT and SA cannot both be blue!
- Why didn't we detect this yet?
- Constraint propagation: reason from constraint to constraint

Consistency of A Single Arc

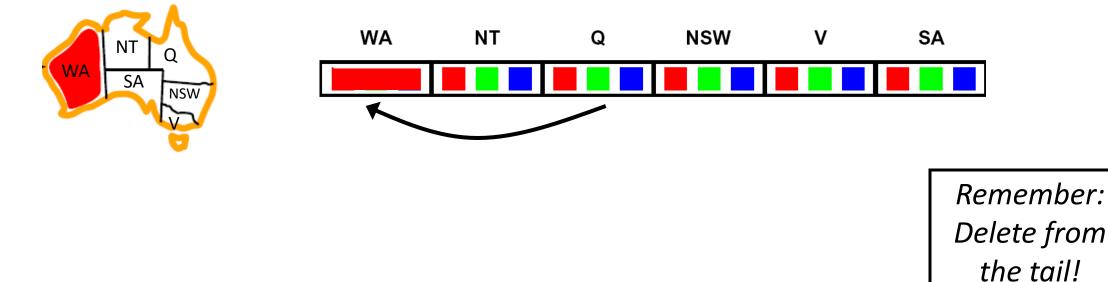
An arc X → Y is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint



- Tail = NT, head = WA
 - If NT = blue: we could assign WA = red
 - If NT = green: we could assign WA = red
 - If NT = red: there is no remaining assignment to WA that we can use
 - Deleting NT = red from the tail makes this arc consistent

Consistency of A Single Arc

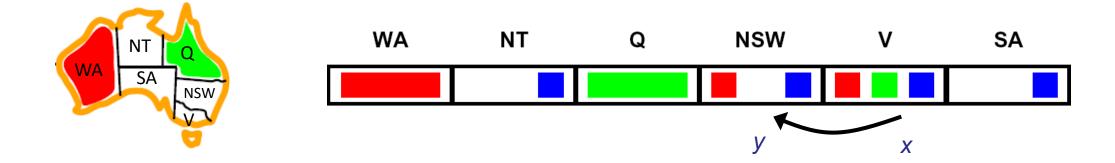
An arc X → Y is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint



Forward checking: Enforcing consistency of arcs pointing to each new assignment

Arc Consistency of an Entire CSP (1/6)

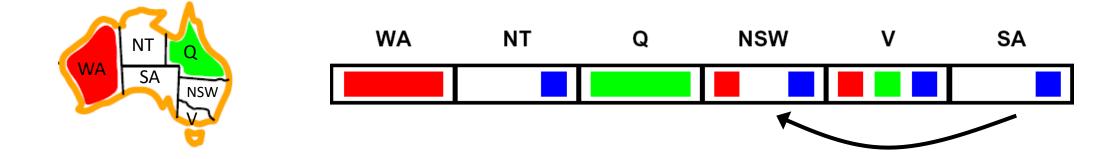
• A simple form of propagation makes sure all arcs are consistent:



 Arc V to NSW is consistent: for *every* x in the tail there is *some* y in the head which could be assigned without violating a constraint

Arc Consistency of an Entire CSP (2/6)

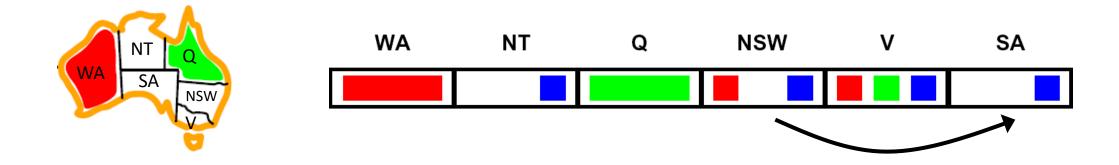
• A simple form of propagation makes sure all arcs are consistent:



Arc SA to NSW is consistent: for every x in the tail there is some y in the head which could be assigned without violating a constraint

Arc Consistency of an Entire CSP (3/6)

• A simple form of propagation makes sure all arcs are consistent:

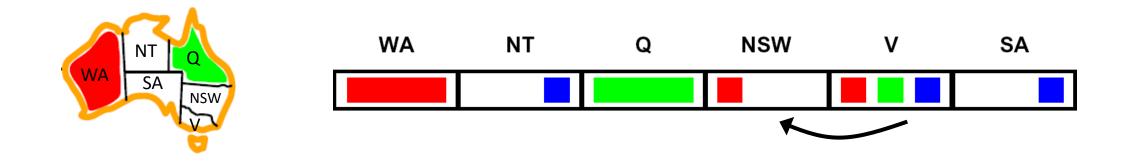


- Arc NSW to SA is not consistent: if we assign NSW = blue, there is no valid assignment left for SA
- To make this arc consistent, we delete NSW = blue from the tail

Remember: Delete from the tail!

Arc Consistency of an Entire CSP (4/6)

• A simple form of propagation makes sure all arcs are consistent:

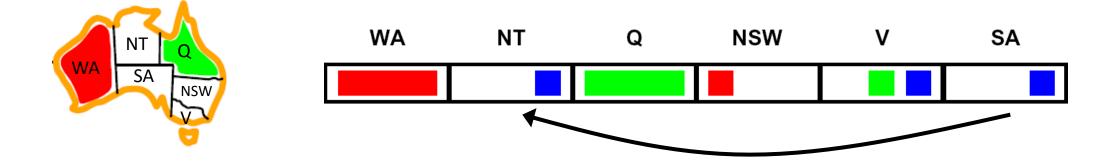


- Remember that arc V to NSW was consistent, when NSW had red and blue in its domain
- After removing blue from NSW, this arc might not be consistent anymore! We need to recheck this arc.
- Important: If X loses a value, neighbors of X need to be rechecked!

Remember: Delete from the tail!

Arc Consistency of an Entire CSP (5/6)

• A simple form of propagation makes sure all arcs are consistent:

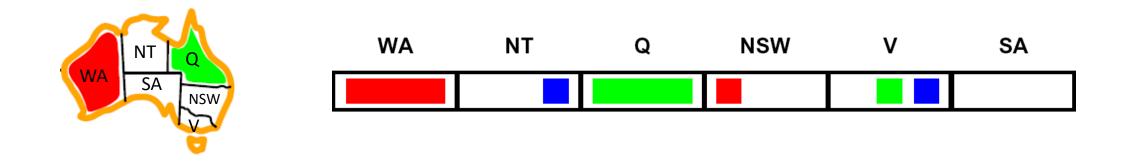


Arc SA to NT is inconsistent. We make it consistent by deleting from the tail (SA = blue).

Remember: Delete from the tail!

Arc Consistency of an Entire CSP (6/6)

• A simple form of propagation makes sure all arcs are consistent:



- SA has an empty domain, so we detect failure. There is no way to solve this CSP with WA = red and Q = green, so we backtrack.
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment

Enforcing Arc Consistency in a CSP

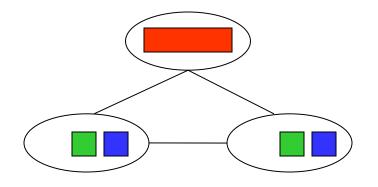
```
function AC-3(csp) returns the CSP, possibly with reduced domains
   inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
   local variables: queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
      (X_i, X_i) \leftarrow \text{REMOVE-FIRST}(queue)
      if REMOVE-INCONSISTENT-VALUES(X_i, X_j) then
         for each X_k in NEIGHBORS [X_i] do
            add (X_k, X_i) to queue
function REMOVE-INCONSISTENT-VALUES (X_i, X_j) returns true iff succeeds
   removed \leftarrow false
   for each x in DOMAIN[X_i] do
      if no value y in DOMAIN[X<sub>i</sub>] allows (x, y) to satisfy the constraint X_i \leftrightarrow X_i
         then delete x from DOMAIN[X<sub>i</sub>]; removed \leftarrow true
```

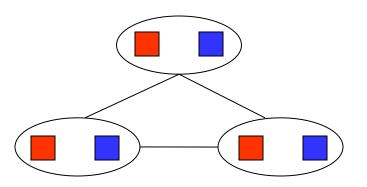
return removed

- Runtime: O(n²d³), can be reduced to O(n²d²)
- In but detecting all possible future problems is NP-hard why?

Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)
- Arc consistency still runs inside a backtracking search!





What went wrong here?

[Demo: coloring -- forward checking] [Demo: coloring -- arc consistency]

Can AI solve Sudoku? *

- For small sizes yes: 9x9 puzzle CSPs are solved with DFS
- LLMs solve 50% of 5x5 puzzles
- LLMs + Search solve 80% of 5x5 puzzles
 - ...and 14% of 9x9 puzzles 😕
- Still looking for best ways to combine LLMs + Search!

For more detail see:

- Large Language Model Guided Tree-of-Thought, Long, 2023
- <u>LLM Prompting and Classical AI: Budding Romance or a Tango</u> with Two Left Feet? Arkoudas, 2023