
 HW2 + Self-assessment HW1 due tonight

 Electronic HW2

 Written HW2

 Self-assessment HW1

 HW3 Games will go out soon (due Tue 9/24 at 11:59pm)

 P2 Games will go out soon (due Fri 9/27 at 5pm)

Announcements

CS 188: Artificial Intelligence

Adversarial Search

Instructors: Pieter Abbeel & Igor Mordatch
University of California, Berkeley

[Many of these slides were originally created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley]

Game Playing State-of-the-Art

 Checkers:
 1950: First computer player
 1959: Samuel’s self-taught program
 1994: First computer champion: Chinook ended 40-year-reign of

human champion Marion Tinsley using complete 8-piece
endgame.

 2007: Checkers solved!

 Chess:
 1945-1960: Zuse, Wiener, Shannon, Turing, Newell&Simon,

McCarthy
 1960-1996: gradual improvements
 1997: Deep Blue defeats human champion Gary Kasparov in a

six-game match
 2024: Stockfish rating 3631 (vs 2847 for Magnus Carlsen)

 Go:
 1968: Zobrist’s program plays legal Go, barely (b>300!)
 1968-2005: various ad hoc approaches tried, novice level
 2005-2014: Monte Carlo tree search -> strong amateur
 2017-2017: Alphago defeats human world champion
 2022: human exploits NN weakness to defeat top Go programs

Game Playing State-of-the-Art

 Checkers:
 1950: First computer player
 1959: Samuel’s self-taught program
 1994: First computer champion: Chinook ended 40-year-reign

of human champion Marion Tinsley using complete 8-piece
endgame.

 2007: Checkers solved!

 Chess:
 1945-1960: Zuse, Wiener, Shannon, Turing, Newell&Simon,

McCarthy
 1960-1996: gradual improvements
 1997: Deep Blue defeats human champion Gary Kasparov in a

six-game match
 2024: Stockfish rating 3631 (vs 2847 for Magnus Carlsen)

 Go:
 1968: Zobrist’s program plays legal Go, barely (b>300!)
 1968-2005: various ad hoc approaches tried, novice level
 2005-2014: Monte Carlo tree search -> strong amateur
 2017-2017: Alphago defeats human world champion
 2022: human exploits NN weakness to defeat top Go programs

 Pacman:

Behavior from Computation

[Demo: mystery pacman (L6D1)]

Video of Demo Mystery Pacman

Types of Games

 Zero-Sum Games
 Agents have opposite utilities (values on

outcomes)

 Lets us think of a single value that one
maximizes and the other minimizes

 Adversarial, pure competition

 General Games
 Agents have independent utilities (values on

outcomes)

 Cooperation, indifference, competition, and
more are all possible
 We don’t make AI to act in isolation, it should a) work

around people and b) help people

 That means that every AI agent needs to solve a game

 Many different kinds of games!

 Axes:

 Zero sum?

 Deterministic or stochastic?

 One, two, or more players?

 Perfect information (can you see the state)?

 Want algorithms for calculating a strategy (policy) which recommends a
move from each state --- i.e. not just a sequence of actions

Types of Games

Adversarial Games:
Deterministic, 2-player, zero-sum, perfect information

Formalization

 Our formalization of adversarial games:

 States: S (start at s0)

 Players: P={MAX, MIN}

 Actions: A (may depend on player / state)

 Transition Function: SxA S

 Terminal Test: S  {true, false}

 Terminal Utilities: S  R (R = ”Reward” = ~score)
MAX maximizes R
MIN minimizes R

 Solution for a player is a policy: S  A

Adversarial Search

Single-Agent Trees

8

2 0 2 6 4 6… …

Value of a State

Non-Terminal States:

8

2 0 2 6 4 6… …
Terminal States:

Value of a state:
The best achievable

outcome (utility)
from that state

Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8

Minimax Values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

Tic-Tac-Toe Game Tree

Adversarial Search (Minimax)

 Deterministic, zero-sum games:

 Tic-tac-toe, chess, checkers

 One player maximizes result

 The other minimizes result

 Minimax search:

 A state-space search tree

 Players alternate turns

 Compute each node’s minimax value:
the best achievable utility against a
rational (optimal) adversary

8 2 5 6

max

min2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

Minimax Implementation

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Implementation (Dispatch)

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Minimax Example

12 8 5 23 2 144 6

Minimax Properties

Optimal against a perfect player. Otherwise?

10 10 9 100

max

min

[Demo: min vs exp (L6D2, L6D3)]

Video of Demo Min vs. Exp (Min)

Video of Demo Min vs. Exp (Exp)

Minimax Efficiency

 How efficient is minimax?
 Just like (exhaustive) DFS

 Time: O(bm)

 Space: O(bm)

 Example: For chess, b  35, m  100
 Exact solution is completely infeasible

 But, do we need to explore the whole
tree?

Resource Limits

Game Tree Pruning

Minimax Example

12 8 5 23 2 144 6

Minimax Pruning

12 8 5 23 2 14

Alpha-Beta Pruning

 General configuration (MIN version)

 We’re computing the MIN-VALUE at some node n

 We’re looping over n’s children

 n’s estimate of the childrens’ min is dropping

 Who cares about n’s value? MAX

 Let a be the best value that MAX can get at any choice

point along the current path from the root

 If n becomes worse than a, MAX will avoid it, so we can

stop considering n’s other children (it’s already bad

enough that it won’t be played)

 MAX version is symmetric

MAX

MIN

MAX

MIN

a

n

Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha-Beta Pruning Properties

 This pruning has no effect on minimax value computed for the root!

 Values of intermediate nodes might be wrong
 Important: children of the root may have the wrong value

 Important: tie-break for action selection to favor the earlier node explored

 Good child ordering improves effectiveness of pruning

 With “perfect ordering”:
 Time complexity drops to O(bm/2)

 Doubles solvable depth!

 Full search of, e.g. chess, is still hopeless…

 This is a simple example of metareasoning (computing about what to compute)

10 10 0

max

min

Alpha-Beta Quiz

Alpha-Beta Quiz 2

Alpha-Beta Quiz 2

10

10

>=100 2

<=2

Resource Limits

Resource Limits

 Problem: In realistic games, cannot search to leaves!

 Solution: Depth-limited search
 Instead, search only to a limited depth in the tree
 Replace terminal utilities with an evaluation function for

non-terminal positions

 Example:
 Suppose we have 100 seconds, can explore 10K nodes / sec
 So can check 1M nodes per move
 - reaches about depth 8 – decent chess program

 Guarantee of optimal play is gone

 More plies makes a BIG difference

 Use iterative deepening for an anytime algorithm
? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Evaluation Functions

Evaluation Functions

 Evaluation functions score non-terminals in depth-limited search

 Ideal function: returns the actual minimax value of the position
 In practice: typically weighted linear sum of features:

 e.g. f1(s) = (num white queens – num black queens), etc.

Evaluation Function Design: Check Against Examples

Pitfall: Thrashing with Bad Evaluation Function

 A danger of depth-limited search with not-so-great evaluation functions
 Pacman knows his score will go up by eating the dot now (west, east)

 Pacman knows his score will go up just as much by eating the dot later (east, west)

 There are no point-scoring opportunities after eating the dot (within the horizon, two here)

 Therefore, waiting seems just as good as eating: he may go east, then back west in the next
round of replanning!

Depth Matters

 Evaluation functions are always
imperfect

 The deeper in the tree the
evaluation function is buried, the
less the quality of the evaluation
function matters

 An important example of the
tradeoff between complexity of
features and complexity of
computation

[Demo: depth limited (L6D4, L6D5)]

Video of Demo Limited Depth (2)

Video of Demo Limited Depth (10)

Iterative Deepening

Iterative deepening using Minimax (or AlphaBeta) as subroutine:

Until run out of time:

1. Do a Minimax up to depth 1, using evaluation function at depth 1

2. Do a Minimax up to depth 2, using evaluation function at depth 2

3. Do a Minimax up to depth 3, using evaluation function at depth 3

4. Do a Minimax up to depth 4, using evaluation function at depth 4

…

When out of time:

Return the result from the deepest search that was fully completed

…
b

Synergies between Evaluation Function and Alpha-Beta?

 Alpha-Beta: amount of pruning depends on expansion ordering
 Evaluation function can provide guidance to expand most promising nodes first (which later makes it

more likely there is already a good alternative on the path to the root)

 (somewhat similar to role of A* heuristic, CSPs filtering)

 Alpha-Beta: (similar for roles of min-max swapped)
 Value at a min-node will only keep going down

 Once value of min-node lower than better option for max along path to root, can prune

 Hence: IF evaluation function provides upper-bound on value at min-node, and upper-bound already
lower than better option for max along path to root
THEN can prune

MiniMiniMax and Emerging Coordination

 Minimax can be extended to more than 2
players
 e.g. 2 ghosts and 1 pacman

 Result: even though the 2 ghosts
independently run their own
MiniMiniMax search, they will naturally
coordinate because:
 They optimize the same objective

 They know they optimize the same objective
(i.e. they know the other ghost is also a
minimizer)

min

min

…

…

…

max

min

min

…

…

Video of Demo Smart Ghosts (Coordination)

Video of Demo Smart Ghosts (Coordination) – Zoomed In

Summary

 Games are decision problems with 2 or more agents
 Huge variety of issues and phenomena depending on details of interactions and payoffs

 For zero-sum games, optimal decisions defined by minimax
 Implementable as a depth-first traversal of the game tree

 Time complexity O(bm), space complexity O(bm)

 Alpha-beta pruning
 Preserves optimal choice at the root

 alpha/beta values keep track of best obtainable values from any max/min nodes on path from root to current node

 Time complexity drops to O(bm/2) with ideal node ordering

 Exact solution is impossible even for “small” games like chess
 Evaluation function

 Iterative deepening (i.e. go as deep as time allows)

 Emergence of coordination:
 For 3 or more agents (all MIN or MAX agents), coordination will naturally emerge from each independently optimizing their

actions through search, as long as they know for each other agent whether they are MIN or MAX

Next Time: Uncertainty!

