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Recall: Minimax
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MiniMiniMax and Emerging Coordination

 Minimax can be extended to more than 2 
players
 e.g. 2 ghosts and 1 pacman

 Result: even though the 2 ghosts 
independently run their own 
MiniMiniMax search, they will naturally 
coordinate because:
 They optimize the same objective

 They know they optimize the same objective 
(i.e. they know the other ghost is also a 
minimizer)
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Video of Demo Smart Ghosts (Coordination)



Video of Demo Smart Ghosts (Coordination) – Zoomed In



Summary this week so far

 Games are decision problems with 2 or more agents
 Huge variety of issues and phenomena depending on details of interactions and payoffs

 For zero-sum games, optimal decisions defined by minimax
 Implementable as a depth-first traversal of the game tree

 Time complexity O(bm), space complexity O(bm)

 Alpha-beta pruning
 Preserves optimal choice at the root

 alpha/beta values keep track of best obtainable values from any max/min nodes on path from root to current node

 Time complexity drops to O(bm/2) with ideal node ordering

 Exact solution is impossible even for “small” games like chess
 Evaluation function

 Iterative deepening (i.e. go as deep as time allows)

 Emergence of coordination:
 For 3 or more agents (all MIN or MAX agents), coordination will naturally emerge from each independently optimizing their 

actions through search, as long as they know for each other agent whether they are MIN or MAX



Uncertain Outcomes



Worst-Case vs. Average Case
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Idea: Uncertain outcomes controlled by chance, not an adversary!



Expectimax Search

 Why wouldn’t we know what the result of an action will be?
 Explicit randomness: rolling dice
 Unpredictable opponents: the ghosts respond randomly
 Actions can fail: when moving a robot, wheels might slip

 Values should now reflect average-case (expectimax) 
outcomes, not worst-case (minimax) outcomes

 Expectimax search: compute the average score under 
optimal play
 Max nodes as in minimax search
 Chance nodes are like min nodes but the outcome is uncertain
 Calculate their expected utilities
 I.e. take weighted average (expectation) of children

 Later, we’ll learn how to formalize the underlying uncertain-
result problems as Markov Decision Processes
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[Demo: min vs exp (L7D1,2)]



Video of Demo Minimax vs Expectimax (Min)



Video of Demo Minimax vs Expectimax (Exp)



Expectimax Pseudocode

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v



Expectimax Pseudocode

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v 5 78 24 -12

1/2
1/3

1/6

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10



Expectimax Example
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Expectimax Pruning?
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Depth-Limited Expectimax
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Estimate of true 
expectimax value 

(which would 
require a lot of 

work to compute)



Probabilities



Reminder: Probabilities

 A random variable represents an event whose outcome is unknown
 A probability distribution is an assignment of weights to outcomes

 Example: Traffic on freeway
 Random variable: T = whether there’s traffic
 Outcomes: T in {none, light, heavy}
 Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

 Some laws of probability (more later):
 Probabilities are always non-negative
 Probabilities over all possible outcomes sum to one

 As we get more evidence, probabilities may change:
 P(T=heavy) = 0.25, P(T=heavy | Hour=8am) = 0.60
 We’ll talk about methods for reasoning and updating probabilities later

0.25

0.50

0.25



 The expected value of a function of a random variable is the 
average, weighted by the probability distribution over 
outcomes

 Example: How long to get to the airport?

Reminder: Expectations

0.25 0.50 0.25Probability:
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 In expectimax search, we have a probabilistic model 
of how the opponent (or environment) will behave in 
any state
 Model could be a simple uniform distribution (roll a die)
 Model could be sophisticated and require a great deal of 

computation
 We have a chance node for any outcome out of our control: 

opponent or environment
 The model might say that adversarial actions are likely!

 For now, assume each chance node magically comes 
along with probabilities that specify the distribution 
over its outcomes

What Probabilities to Use?

Having a probabilistic belief about 
another agent’s action does not mean 

that the agent is flipping any coins!



Quiz: Informed Probabilities

 Let’s say you know that your opponent is actually running a depth 2 minimax, using the 
result 80% of the time, and moving randomly otherwise

 Question: What tree search should you use?  

0.1          0.9

 Answer: Expectimax!
 To figure out EACH chance node’s probabilities, 

you have to run a simulation of your opponent

 This kind of thing gets very slow very quickly

 Even worse if you have to simulate your 
opponent simulating you…

 … except for minimax, which has the nice 
property that it all collapses into one game tree



Modeling Assumptions



The Dangers of Optimism and Pessimism

Dangerous Optimism
Assuming chance when the world is adversarial

Dangerous Pessimism
Assuming the worst case when it’s not likely



Assumptions vs. Reality

Adversarial Ghost Random Ghost

Minimax
Pacman

Won 5/5

Avg. Score: 483

Won 5/5

Avg. Score: 493

Expectimax
Pacman

Won 1/5

Avg. Score: -303

Won 5/5

Avg. Score: 503

[Demos: world assumptions (L7D3,4,5,6)]

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman
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Video of Demo World Assumptions
Random Ghost – Expectimax Pacman



Video of Demo World Assumptions
Adversarial Ghost – Minimax Pacman



Video of Demo World Assumptions
Adversarial Ghost – Expectimax Pacman



Video of Demo World Assumptions
Random Ghost – Minimax Pacman



Other Game Types



Mixed Layer Types

 E.g. Backgammon

 Expectiminimax

 Environment is an 
extra “random 
agent” player that 
moves after each 
min/max agent

 Each node 
computes the 
appropriate 
combination of its 
children



Example: Backgammon

 Dice rolls increase b: 21 possible rolls with 2 dice

 Backgammon  20 legal moves

 Depth 2 = 20 x (21 x 20)3 = 1.2 x 109

 As depth increases, probability of reaching a given 
search node shrinks

 So usefulness of search is diminished

 So limiting depth is less damaging

 But pruning is trickier…

 Historic AI: TDGammon uses depth-2 search + very 
good evaluation function + reinforcement learning: 
world-champion level play

 1st AI world champion in any game!

Image: Wikipedia



Multi-Agent Utilities

 What if the game is not zero-sum, or has multiple players?

 Generalization of minimax:
 Terminals have utility tuples
 Node values are also utility tuples
 Each player maximizes its own component
 Can give rise to cooperation and

competition dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5



Utilities



Maximum Expected Utility

 Why should we average utilities?  Why not minimax?

 Principle of maximum expected utility:
 A rational agent should chose the action that maximizes its 

expected utility, given its knowledge

 Questions:
 Where do utilities come from?

 How do we know such utilities even exist?

 How do we know that averaging even makes sense?

 What if our behavior (preferences) can’t be described by utilities?



Rationality



Rational Preferences

Theorem: Rational preferences imply behavior describable as maximization of expected utility

The Axioms of Rationality



 Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]
 Given any preferences satisfying these constraints, there exists a real-valued

function U such that:

 I.e. values assigned by U preserve preferences of both prizes and lotteries!

 Maximum expected utility (MEU) principle:
 Choose the action that maximizes expected utility
 Note: an agent can be entirely rational (consistent with MEU) without ever representing or 

manipulating utilities and probabilities
 E.g., a lookup table for perfect tic-tac-toe, a reflex vacuum cleaner

MEU Principle



Human Utilities



 Utilities map states to real numbers. Which numbers?

 Standard approach to assessment (elicitation) of human utilities:

 Compare a prize A to a standard lottery Lp between

 “best possible prize” u+ with probability p

 “worst possible catastrophe” u- with probability 1-p

 Adjust lottery probability p until indifference: A ~ Lp

 Resulting p is a utility in [0,1]

Human Utilities

0.999999                              0.000001

No change

Pay $30

Instant death



Money

 Money does not behave as a utility function, but we can talk about the 
utility of having money (or being in debt)

 Given a lottery L = [p, $X; (1-p), $Y]

 The expected monetary value EMV(L) is p*X + (1-p)*Y

 U(L) = p*U($X) + (1-p)*U($Y)

 Typically, U(L) < U( EMV(L) )

 In this sense, people are risk-averse

 When deep in debt, people are risk-prone



Example: Insurance

 Consider the lottery [0.5, $1000;  0.5, $0]
 What is its expected monetary value?  ($500)

 What is its certainty equivalent?

 Monetary value acceptable in lieu of lottery

 $400 for most people

 Difference of $100 is the insurance premium

 There’s an insurance industry because people 
will pay to reduce their risk

 If everyone were risk-neutral, no insurance 
needed!

 It’s win-win: you’d rather have the $400 and 
the insurance company would rather have the 
lottery (their utility curve is flat and they have 
many lotteries)



Example: Human Rationality?

 Famous example of Allais (1953)

 A: [0.8, $4k;    0.2, $0]
 B: [1.0, $3k;    0.0, $0]

 C: [0.2, $4k;    0.8, $0]
 D: [0.25, $3k;    0.75, $0]

 Most people prefer B > A, C > D

 But if U($0) = 0, then
 B > A  U($3k) > 0.8 U($4k)
 C > D  0.8 U($4k) > U($3k)



Next Time: MDPs!


