
Announcements

§ Homework 3 due today (Sept 24) at 11:59pm PT

§ Project 2 due next Wednesday (Oct 2) at 11:59pm PT

CS 188: Artificial Intelligence
Markov Decision Processes I

University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Preview of Next Two Weeks

§ This week: pre-compute policies
§ Know the model of the world

§ Next week: learn policies from trial and error
§ Learn only from interactions with the world

Search &
Planning

Reinforcement
Learning

Probability &
Inference

Supervised
Learning

Sequence of
actions for one

situation

Policy for how
to act in any

situation

Examples of (Deep) Reinforcement Learning

2013: Playing Atari games

Pong Enduro Beamrider Q*bert

[Human-level control through deep reinforcement learning. Mnih et al. Nature 2015]

Examples of (Deep) Reinforcement Learning

2015: Locomotion from trial and error

[Trust Region Policy Optimization. Schulman et al. ICLR 2015]

Examples of (Deep) Reinforcement Learning

2016: Playing Go (and beating human champion)

[Mastering the game of Go with deep neural networks and tree search. Silver et al. Nature 2016]

Examples of (Deep) Reinforcement Learning

2019: Robot manipulation

[Solving Rubik's cube with a robot hand. OpenAI. 2019]

Examples of (Deep) Reinforcement Learning

2022: Nuclear fusion plasma control

[Magnetic control of tokamak plasmas through deep reinforcement learning. Degrave et al. Nature 2022]

Photo Credits: DeepMind and SPC/EPFL

Examples of (Deep) Reinforcement Learning

2022: Training Language Assistants with Human Feedback

[Aligning language models to follow instructions. Ouyang et al. 2022]

Non-Deterministic Search

Example: Grid World

§ A maze-like problem
§ The agent lives in a grid
§ Walls block the agent’s path

§ Noisy movement: actions do not always go as planned
§ 80% of the time, the action North takes the agent North

(if there is no wall there)
§ 10% of the time, North takes the agent West; 10% East
§ If there is a wall in the direction the agent would have

been taken, the agent stays put

§ The agent receives rewards each time step
§ Small “living” reward each step (can be negative)
§ Big rewards come at the end (good or bad)

§ Goal: maximize sum of rewards

Markov Decision Processes

§ An MDP is defined by:
§ A set of states s Î S
§ A set of actions a Î A
§ A transition function T(s, a, s’)

§ Probability that a from s leads to s’, i.e., P(s’| s, a)
§ Also called the model or the dynamics

§ A reward function R(s, a, s’)
§ Sometimes just R(s) or R(s’)

§ A start state
§ Maybe a terminal state

[Demo – gridworld manual intro (L8D1)]

Gridworld Example

+1

-1

3

2

1

3 421

s a s’ R

(1,1) north

T(s, a, s’):

• T((1,1), north, (2,1)) = 0.8

• T((1,1), north, (1,2)) = 0.1

• T((1,1), north, (1,1)) = 0.1

Gridworld Example

+1

-1

3

2

1

3 421

s a s’ R

(1,1) north (2,1) -0.1

R(s, a, s’):

R((1,1), north, (2,1)) = -0.1

Gridworld Example

+1

-1

3

2

1

3 421

s a s’ R

(1,1) north (2,1) -0.1

(2,1) north (3,1) -0.1

(3,1) east (2,1) -0.1

(2,1) north (3,1) -0.1

(3,1) east (2,3) -0.1

(2,3) east (3,3) -0.1

(3,3) east (4,3) -0.1

(4,3) exit (4,3) +1

What is Markov about MDPs?

§ “Markov” generally means that given the present state, the
future and the past are independent

§ For Markov decision processes, “Markov” means action
outcomes depend only on the current state

§ This is just like search, where the successor function could only
depend on the current state (not the history)

Andrey Markov
(1856-1922)

Policies

§ In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

§ For MDPs, we want an optimal policy p*: S → A
§ A policy p gives an action for each state
§ An optimal policy is one that maximizes

expected utility if followed
§ An explicit policy defines a reflex agent

Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Example: Racing

Example: Racing
§ A robot car wants to travel far, quickly
§ Three states: Cool, Warm, Overheated
§ Two actions: Slow, Fast
§ Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

p*(Cool) = Fast
p*(Warm) = Slow
p*(Overheated) = end

Optimal Policy:

Racing Search Tree

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

MDP Search Trees
§ Each MDP state projects an expectimax-like search tree

a

s

s’

s, a
(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)
T(s,a,s’)

s is a state

(s, a) is a
q-state

Utilities of Sequences

Utilities of Sequences

§ What preferences should an agent have over reward sequences?

§ More or less?

§ Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or

Discounting

§ It’s reasonable to maximize the sum of rewards
§ It’s also reasonable to prefer rewards now to rewards later
§ One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

(𝛾 is between 0 and 1)

Discounting

§ How to discount?
§ Each time we descend a level, we

multiply in the discount once

§ Why discount?
§ Sooner rewards probably do have

higher utility than later rewards
§ Also helps our algorithms converge

§ Example: discount of 0.5
§ U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3 = 2.75
§ U([3,2,1]) = 1*3 + 0.5*2 + 0.25*1 = 5.25
§ U([1,2,3]) < U([3,2,1])

Discounting in Public Policy

obamawhitehouse.archives.gov/sites/default/files/page/files/201701_cea_discounting_issue_brief.pdf

𝛾 =
0.93
or
0.97

Quiz: Discounting

§ Given:

§ Actions: East, West, and Exit (only available in exit states a, e)
§ Transitions: deterministic

§ Quiz 1: For g = 1, what is the optimal policy?

§ Quiz 2: For g = 0.1, what is the optimal policy?

Infinite Utilities?!

§ Problem: What if the game lasts forever? Do we get infinite rewards?

§ Solutions:
§ Finite horizon: (similar to depth-limited search)

§ Terminate episodes after a fixed T steps (e.g. life)
§ Gives nonstationary policies (p depends on time left)

Infinite Utilities?!

§ Problem: What if the game lasts forever? Do we get infinite rewards?

§ Solutions:
§ Finite horizon: (similar to depth-limited search)

§ Terminate episodes after a fixed T steps (e.g. life)
§ Gives nonstationary policies (p depends on time left)

§ Discounting: use 0 < g < 1

§ Smaller g means smaller “horizon” – shorter term focus

§ Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Recap: Defining MDPs

§ Markov decision processes:
§ Set of states S
§ Start state s0
§ Set of actions A
§ Transitions P(s’|s,a) (or T(s,a,s’))
§ Rewards R(s,a,s’) (and discount g)

§ MDP quantities so far:
§ Policy = Choice of action for each state
§ Utility = sum of (discounted) rewards

a

s

s, a

s,a,s’
s’

Solving MDPs

Recall: Racing
§ A robot car wants to travel far, quickly
§ Three states: Cool, Warm, Overheated
§ Two actions: Slow, Fast
§ Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Racing Search Tree

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Racing Search Tree

§ We’re doing way too much
work with expectimax!

§ Problem: States are repeated
§ Idea: Only compute needed

quantities once, cache the rest in
a lookup table

§ Problem: Tree goes on forever
§ Idea: Do a depth-limited

computation, but with increasing
depths until change is small

§ Note: deep parts of the tree
eventually don’t matter if γ < 1

Optimal Quantities

a

s

s’

s, a

(s,a,s’) is a
transition

T(s,a,s)’

s is a
state

(s, a) is a
q-state

[Demo – gridworld values (L8D4)]

§ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

§ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

§ The optimal policy:
p*(s) = optimal action from state s

V*(s)

Q*(s,a)

Optimal Quantities in Gridworld

§ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

§ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

§ The optimal policy:
p*(s) = optimal action from state s

Noise = 0.2
Discount = 0.9
Living reward = 0

Optimal Quantities in Gridworld

§ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

§ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

§ The optimal policy:
p*(s) = optimal action from state s

Noise = 0.2
Discount = 0.9
Living reward = 0

Optimal Quantities in Gridworld

§ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

§ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

§ The optimal policy:
p*(s) = optimal action from state s

Noise = 0.2
Discount = 0.9
Living reward = 0

Values of States

§ Recursive definition of value (similar to expectimax):

§ But how do we solve these equations?

(s,a,s’) is a
transition

a

s

s’

s, a

T(s,a,s’)

s is a
state

(s, a) is a
q-state

V*(s)

V*(s’)

Q*(s,a)

Time-Limited Values

§ Key idea: time-limited values

§ Define Vk(s) to be the optimal value of s if the game ends
in k more time steps
§ Equivalently, it’s what a depth-k expectimax would give from s

[Demo – time-limited values (L8D6)]

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Computing Time-Limited Values

Value Iteration

Value Iteration

§ Start with V0(s) = 0: no time steps left means an expected reward sum of zero

§ Given vector of Vk(s) values, do one step of expectimax from each state:

§ Repeat until convergence, which yields V*

§ Complexity of each iteration: O(S2A)

§ Theorem: will converge to unique optimal values
§ Basic idea: approximations get refined towards optimal values
§ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Example: Value Iteration

0 0 0

Assume no discount!

Example: Value Iteration

0 0 0

Assume no discount!

a=slow: 1(1 + 0) = 1

a=fast: 0.5(2 + 0) + 0.5(2 + 0) = 2

?

Example: Value Iteration

0 0 0

Assume no discount!

a=slow: 0.5(1 + 0) + 0.5(1 + 0) = 1

a=fast: 1(-10 + 0) = -10

2 ?

Example: Value Iteration

0 0 0

2 1 0

?

Assume no discount!

a=slow: 1(1 + 2) = 3

a=fast: 0.5(2 + 2) + 0.5(2 + 1) = 3.5

Example: Value Iteration

0 0 0

2 1 0

3.5 ? 0

Assume no discount!

a=slow: 0.5(1 + 2) + 0.5(1 + 1) = 2.5

a=fast: 1(-10 + 0) = -10

Example: Value Iteration

0 0 0

2 1 0

3.5 2.5 0

Assume no discount!

What we did today

§ Working with stochastic environments (but world model known)
§ Introduced MDPs (describe problem) and policies (solution)

§ MDPs look similar to expectimax search trees

§ Discussed how to solve MDPs
§ Optimal state value V*(s), and q-state value Q*(s,a) are key quantities
§ Bellman equation characterizes the optimal value function:

§ A key equation in RL and this class!

§ Value iteration is an algorithm to solve the Bellman equation

Next Time: Policy-Based Methods

