
CS 188: Artificial Intelligence
Markov Decision Processes II

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today

§ Review MDPs, Bellman equation, value iteration

§ Policy extraction, policy evaluation, policy iteration

§ All based on the Bellman equation

§ Summarize the zoo of equations at the end

Recap: MDPs

§ Markov decision processes:
§ States S
§ Actions A
§ Transitions P(s’|s,a) (or T(s,a,s’))
§ Rewards R(s,a,s’) (and discount g)
§ Start state s0

§ Goal: maximize sum of (discounted) rewards

§ Example: Grid World

a

s

s, a

T(s,a,s’)
s’

Example: Grid World

§ A maze-like problem
§ The agent lives in a grid
§ Walls block the agent’s path

§ Noisy movement: actions do not always go as planned
§ 80% of the time, the action North takes the agent North
§ 10% of the time, North takes the agent West; 10% East
§ If there is a wall in the direction the agent would have

been taken, the agent stays put

§ The agent receives rewards each time step
§ Small “living” reward each step (can be negative)
§ Big rewards come at the end (good or bad)

§ Goal: maximize sum of (discounted) rewards

Solving MDPs

Optimal Quantities

§ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

§ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

§ The optimal policy:
p*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

T(s,a,s)’

s is a state

(s, a) is a q-
state

V*(s)

Q*(s,a)

The Bellman Equations

§ Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values

§ These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

a

s

s, a

T(s,a,s’)
s’

V*(s)

Q*(s,a)

V*(s’)

The Bellman Equations

How to be optimal:

 Step 1: Take correct first action

 Step 2: Keep being optimal

Value Iteration

§ Start with V0(s) = 0: no time steps left means an expected reward sum of zero

§ Given vector of Vk(s) values, do one step of expectimax from each state:

§ Repeat until convergence, which yields V*

§ Complexity of each iteration: O(S2A)

§ Theorem: will converge to unique optimal values
§ Basic idea: approximations get refined towards optimal values
§ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

k=1

V1()

V1(s) is value of depth-1
expectimax from s

k=1

V1()

V1(s) is value of depth-1
expectimax from s

k=2

k=2

V2()

V2(s) is value of depth-2
expectimax from s

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Example: Value Iteration

0 0 0

Assume no discount!

Example: Value Iteration

0 0 0

Assume no discount!

a=slow: 1(1 + 0) = 1

a=fast: 0.5(2 + 0) + 0.5(2 + 0) = 2

?

a=slow:

a=fast:

Example: Value Iteration

0 0 0

Assume no discount!

a=slow: 0.5(1 + 0) + 0.5(1 + 0) = 1

a=fast: 1(-10 + 0) = -10

2 ?

Example: Value Iteration

0 0 0

2 1 0

?

Assume no discount!

a=slow: 1(1 + 2) = 3

a=fast: 0.5(2 + 2) + 0.5(2 + 1) = 3.5

a=slow:

a=fast:

Example: Value Iteration

0 0 0

2 1 0

3.5 ? 0

Assume no discount!

a=slow: 0.5(1 + 2) + 0.5(1 + 1) = 2.5

a=fast: 1(-10 + 0) = -10

Example: Value Iteration

0 0 0

2 1 0

3.5 2.5 0

Assume no discount!

Value Iteration

§ Bellman equations characterize the optimal values:

§ Value iteration computes them:

Quiz: Bellman equation for Q values?

§ We saw Bellman equation that characterized optimal V*(s)

§ Can we write down Bellman equation for Q*(s,a)?

𝑉∗ 𝑠 = max
"
'
#$

𝑇 𝑠, 𝑎, 𝑠$ 	𝑅 𝑠, 𝑎, 𝑠$ + 𝛾	𝑉∗ 𝑠$

a

s

s, a

T(s,a,s’)

a’

s’

s’, a’

Q*(s, a)

Q*(s’, a’)

𝑄∗ 𝑠, 𝑎 ='
#$

𝑇 𝑠, 𝑎, 𝑠$ 	𝑅 𝑠, 𝑎, 𝑠$ + 𝛾	max
"!
	𝑄∗ 𝑠$, 𝑎$???

(don’t look at the next slide if you’re
following along with the notes please :)

Quiz: Bellman equation for Q values?

§ We saw Bellman equation that characterized optimal V*(s)

§ Can we write down Bellman equation for Q*(s,a)?

§ Leads to Q-Value iteration algorithm we’ll see next week

a

s, a

T(s,a,s’)

a’

s’

s’, a’

Q*(s, a)

Q*(s’, a’)

𝑄∗ 𝑠, 𝑎 ='
#$

𝑇 𝑠, 𝑎, 𝑠$ 	𝑅 𝑠, 𝑎, 𝑠$ + 𝛾	max
"!
	𝑄∗ 𝑠$, 𝑎$

s
𝑉∗ 𝑠 = max

"
'
#$

𝑇 𝑠, 𝑎, 𝑠$ 	𝑅 𝑠, 𝑎, 𝑠$ + 𝛾	𝑉∗ 𝑠$

But how do we get actions? (Policy Extraction)

Computing Actions from Values

§ Let’s imagine we have the optimal values V*(s)

§ How should we act?
§ It’s not obvious!

§ We need to do a mini-expectimax (one step)

§ This is called policy extraction, since it gets the policy implied by the values

ex:
max {a: 2, b: 5, c: 1} = 5
argmax {a: 2, b: 5, c: 1} = b

Computing Actions from Q-Values

§ Let’s imagine we have the optimal q-values:

§ How should we act?
§ Completely trivial to decide!

§ Important lesson: actions are easier to select from q-values than values!

Problems with Value Iteration

§ Value iteration repeats the Bellman updates:

§ Problem 1: It’s slow – O(S2A) per iteration

§ Problem 2: The “max” at each state rarely changes

§ Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’
s’

[Demo: value iteration (L9D2)]

k=12

k=100

Policy Methods

Policy Evaluation

Fixed Policies

§ Expectimax trees max over all actions to compute the optimal values

§ If we fixed some policy p(s), then the tree would be simpler – only one action per state
§ … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’
s’

p(s)

s

s, p(s)

s, p(s),s’
s’

Do the optimal action Do what p says to do

Utilities for a Fixed Policy

§ Define the utility of a state s, under a fixed policy p:
Vp(s) = expected total discounted rewards starting in s and following p

§ What is the recursive relation (one-step look-ahead / Bellman
equation)?
§ Hint: recall Bellman equation for optimal policy:

p(s)

s

s, p(s)

s, p(s),s’
s’

Utilities for a Fixed Policy

§ Define the utility of a state s, under a fixed policy p:
Vp(s) = expected total discounted rewards starting in s and following p

§ What is the recursive relation (one-step look-ahead / Bellman
equation)?
§ Hint: recall Bellman equation for optimal policy:

§ Answer:

p(s)

s

s, p(s)

s, p(s),s’
s’

Policy Evaluation

§ How do we calculate the V’s for a fixed policy p?

§ Idea 1: Turn recursive Bellman equations into updates
 (like value iteration)

§ Efficiency: O(S2) per iteration

§ Idea 2: Without the maxes, the Bellman equations are just a linear system
§ Solve with your favorite linear system solver

p(s)

s

s, p(s)

s, p(s),s’
s’

Vp (s1)
Vp (s2)
…

x =

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Iteration

Policy Iteration

§ Alternative approach for optimal values:
§ Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal

utilities!) until convergence
§ Step 2: Policy improvement: update policy using one-step look-ahead with resulting

converged (but not optimal!) utilities as future values
§ Repeat steps until policy converges

§ This is policy iteration
§ It’s still optimal!
§ Can converge (much) faster under some conditions

Policy Iteration

§ Evaluation: For fixed current policy p, find values with policy evaluation:
§ Iterate until values converge:

§ End up with value function

§ Improvement: For fixed values, get a better policy using policy extraction
§ One-step look-ahead:

§ Repeat steps until policy converges

§ Initialize 𝜋% 𝑠 = 𝑠𝑜𝑚𝑒	𝑑𝑒𝑓𝑎𝑢𝑙𝑡	𝑎𝑐𝑡𝑖𝑜𝑛 for all s
§ for 𝑖 of policy iteration:

Policy evaluation:
§ Initialize 𝑉%

&" 𝑠 = 0 for all s
§ for 𝑘 of policy evaluation:

§

Policy improvement:

§

Policy Iteration

Demo: Policy Iteration

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Comparison

§ Both value iteration and policy iteration compute the same thing (all optimal values)

§ In value iteration:
§ Every iteration updates both the values and (implicitly) the policy
§ We don’t track the policy, but taking the max over actions implicitly recomputes it

§ In policy iteration:
§ We do several passes that update utilities with fixed policy (each pass is fast because we

consider only one action, not all of them)
§ After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
§ The new policy will be better (or we’re done)

§ Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

§ So you want to….
§ Compute optimal values: use value iteration or policy iteration

§ Compute values for a particular policy: use policy evaluation

§ Turn your values into a policy: use policy extraction (one-step lookahead)

Value Iteration 𝑉∗ Policy Iteration 𝑉∗or

Policy Evaluation 𝑉𝜋𝜋

Policy Extraction 𝜋𝑉𝑉

§ Optimal V and Q value functions:

§ Value function for fixed policy p:

§ Policy p for V and Q value functions:

Summary: Bellman Equation Zoo!

𝑄∗ 𝑠, 𝑎 ='
#$

𝑇 𝑠, 𝑎, 𝑠$ 	𝑅 𝑠, 𝑎, 𝑠$ + 𝛾	max
"!
	𝑄∗ 𝑠$, 𝑎$

Next Time: Reinforcement Learning!

Extra Time: Convergence*

§ How do we know the Vk vectors are going to converge?

§ Proof sketch (assuming discount 0<γ<1):
§ For any state Vk and Vk+1 can be viewed as depth k+1

expectimax results in nearly identical search trees
§ The difference is that on the bottom layer, Vk+1 has actual

rewards while Vk has zeros
§ That last layer is at best all RMAX
§ It is at worst RMIN
§ But everything is discounted by γk that far out
§ So Vk and Vk+1 are at most γk max|R| different
§ So as k increases, the values converge

(won’t be on exams or homeworks)

