CS 188: Artificial Intelligence

Markov Decision Processes II

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]

Today

= Review MDPs, Bellman equation, value iteration

= Policy extraction, policy evaluation, policy iteration

= All based on the Bellman equation

= Summarize the zoo of equations at the end

Recap: MDPs

= Markov decision processes:
= States S
= Actions A
" Transitions P(s’|s,a) (or T(s,a,s’))
» Rewards R(s,a,s’) (and discount)
= Start state s,

= Goal: maximize sum of (discounted) rewards

= Example: Grid World 3

Example: Grid World

A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as planned
= 80% of the time, the action North takes the agent North
= 10% of the time, North takes the agent West; 10% East

= |f thereis a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of (discounted) rewards

Solving MDPs

Optimal Quantities

"= The value (utility) of a state s:
V*(s) = expected utility starting in s and
acting optimally

" The value (utility) of a g-state (s,a):

Q’(s,a) = expected utility starting out
having taken action a from state s and
(thereafter) acting optimally

=" The optimal policy:
n'(s) = optimal action from state s

V'(s) A S

S is a state

(s, a)isag-
state

(s,a,s’) is a
transition

The Bellman Equations

= Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values

V*(s) = max Q*(s, a)

Q*(s,a) => T(s,a, s [R(S, a,s’) + ’yV*(s’)}

V*(s) = mO?XZT(S,a, s") {R(s,a, s + ny*(s')}

" These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Value lteration

Start with Vy(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one step of expectimax from each state:

Viet1(s) < mC?XZT(S,a,, s") {R(s,a, s + *ka(s/)}

Repeat until convergence, which yields V* s,a,8

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

VALUES AFTER O ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 1 ITERATIONS

V;(s) is value of depth-1
expectimax from s

VALUES AFTER 1 ITERATIONS

V;(s) is value of depth-1
expectimax from s

VALUES AFTER 1 ITERATIONS

VALUES AFTER 2 ITERATIONS

V(s) is value of depth-2
VALUES AFTER 2 ITERATIONS expectimax from s

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 4 ITERATIONS NPise =0.2
Discount = 0.9

Living reward =0

k=5

Cridworld Display

.

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=6

Gridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=7

Gridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Nf’ise =0.2
Discount = 0.9

Living reward =0

k=9

Gridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=11

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Example: Value Iteration

Overheated

Assume no discount!
Vi

Viet1(8) maaXZT(s, a,s') [R(s, a,s’) + WVk(sl)}

S

Example: Value Iteration

Overheated

v [3] Assume no discount!
1 r

Viet1(8) maaXZT(s, a,s') [R(s, a,s’) + ’ka(S/)}

S

Vo [0 0 0] a=slow: 1(1+0)=1

a=fast: 0.5(2+0)+0.5(2+0)=2

Example: Value Iteration

Overheated

v [) 3] Assume no discount!
1 r

Viet1(8) maaXZT(s, a,s') [R(s, a,s’) + ’ka(S/)}

S

Vo [0 0 0] a=slow: 0.5(1+0)+0.5(1+0)=1

a=fast: 1(-10 + 0) =-10

Example: Value Iteration

Overheated

Assume no discount!
(2 1 o)

Viet1(8) maaXZT(s, a,s') [R(s, a,s’) + ’ka(S/)}

S

Vo [0 0 0] a=slow: 1(1+2)=3

a=fast: 0.5(2+2)+0.5(2+1)=35

Example: Value Iteration

Overheated

Assume no discount!
(2 1 o)

Viet1(8) maaXZT(s, a,s') [R(s, a,s’) + ’}/Vk(sl)}

S

Vo [0 0 0] a=slow: 0.5(1+2)+0.5(1+1)=2.5

a=fast: 1(-10 + 0) =-10

Example: Value Iteration

Overheated

7 [) 1 0] Assume no discount!
Viet1(8) maaXZT(s, a,s') [R(s, a,s’) + WVk(sl)}

S

Value lteration

= Bellman equations characterize the optimal values:

V*i(s) = mO?XZT(S, a,s) {R(s, a,s’) + ”)/V*(S/)}

S

= Value iteration computes them:

Viet1(s) <+ mC?XZT(s, a,s) {R(s, a,s’) + nyk(s/)}

S

Quiz: Bellman equation for Q values?

= We saw Bellman equation that characterized optimal V*(s)

V*(s) = mc?xz: T(s,a,s)|R(s,a,s")+yV*(s')]

= Can we write down Bellman equation for Q*(s,a)?

Q*(s,a) = 277 Q*(s,a’)

(don’t look at the next slide if you're
following along with the notes please :)

Quiz: Bellman equation for Q values?

= We saw Bellman equation that characterized optimal V*(s)

V*(s) = mc?xz: T(s,a,s)|R(s,a,s")+yV*(s')]

= Can we write down Bellman equation for Q*(s,a)?

Q*(s,a) = 2 T(s,a,s") [R(S, as')+y max Q*(s’, a’)]

Q*(s’, a’)
" Leads to Q-Value iteration algorithm we’ll see next week

But how do we get actions? (Policy Extraction)

Computing Actions from Values

" Let’s imagine we have the optimal values V*(s)

= How should we act?

=" |t’s not obvious!

= We need to do a mini-expectimax (one step)

7*(s) = arg maXZT(S, a,s)[R(s,a,s) +~V*(s)]
¢ s/ ex:
max {a: 2, b:5,c:1}=5
argmax {a: 2,b:5,c:1}=b

= This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

" Let’s imagine we have the optimal g-values: WW
ANV
= How should we act? W-}q
= Completely trivial to decide! 2 ‘”’9 00

" |mportant lesson: actions are easier to select from g-values than values!

Problems with Value Iteration

= Value iteration repeats the Bellman updates:

Vi41(s) < mC?XZT(S,a, s") [R(s,a, s + ’ka(s’)]

S

= Problem 1: It’s slow — O(S2A) per iteration

= Problem 2: The “max” at each state rarely changes

= Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS

Policy Methods

Policy Evaluation

Fixed Policies

Do the optimal action Do what 7 says to do

-"s,a,S

;\A
A s

= Expectimax trees max over all actions to compute the optimal values

= |f we fixed some policy 1t(s), then the tree would be simpler — only one action per state
= .. though the tree’s value would depend on which policy we fixed

Utilities for a Fixed Policy

= Define the utility of a state s, under a fixed policy n:
V™(s) = expected total discounted rewards starting in s and following &t

= What is the recursive relation (one-step look-ahead / Bellman
equation)?
= Hint: recall Bellman equation for optimal policy:

V*i(s) = mC?XZT(S, a,s) [R(s, a,s’) + ’}/V*(S,)}

Utilities for a Fixed Policy

Define the utility of a state s, under a fixed policy m:
V™(s) = expected total discounted rewards starting in s and following &t

What is the recursive relation (one-step look-ahead / Bellman)
equation)? s;m(s),s
= Hint: recall Bellman equation for optimal policy: A s’

V*i(s) = mC?XZT(S, a,s) [R(s, a,s’) + ny*(s’)}

Answer:

VT(s) =) T(s,m(s),s)R(s,7(s),8) + V()]

Policy Evaluation

How do we calculate the V’s for a fixed policy ©?

Idea 1: Turn recursive Bellman equations into updates

(like value iteration) s, Tt(s)
Voi(s) =0 \
, , / S;m(s),s’ e
ka_l_l(s) — ZT(S, 7(s),s)[R(s,m(s),s) + Vi (s")] A s
/

S
Efficiency: O(S?) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system

= Solve with your favorite linear system solver Ve (s,)

X| Vr(s2)

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Iteration

Policy Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

= Repeat steps until policy converges

= This is policy iteration
= |t’s still optimal!

= Can converge (much) faster under some conditions

Policy Iteration

= Evaluation: For fixed current policy =, find values with policy evaluation:
= |terate until values converge:

Vi1 (s) zm mi(s),8") |R(s,mi(s),s") + vV (s))]

= End up with value function V™

= |mprovement: For fixed values, get a better policy using policy extraction
= One-step look-ahead:

mi4+1(s) = arg maXZT(S, a,s) {R(s, a,s’) + ’yVWi(S/)}

8,

= Repeat steps until policy converges

Policy Iteration

= |nitialize my(s) = some default action for all s
= fori of policy iteration:

Policy evaluation:

* |nitialize I/()”i(s) = 0 foralls

* for k of policy evaluation:
Vi (s) < Y T(s,mi(s),s) |R(s,mi(s), s') + v V()
S’

"Policy improvement:
.) — T / / Uy /
mit1(s) = argmax 3 T(s,a,s) |R(s,a,8) + V()]

S

Demo: Policy Iteration

GridWorld: Dynamic Programming Demo

Toggle Value lteration

Policy Evaluation (one sweep) ’ ‘ Policy Update ’

Reset

000 [000 [0.00 [0.00 |028 [0.31 (028 [0.00 [0.28 |0.31
L D A g N 2 | 9 v e |

0.00 |[0.00 |0.00 [0.28]0.31 0.35 |0.31 0.28 |0.31 0.35

4 —_— —_— —_— l — +—> —_— l
0.0g 0.39 0.39
| |
0.00 0.00 0.00 -1.00 0.43 0.48 0.53 0.48 0.43
Pl e 48 - - 9 |9
R-1.0 1
0.0g 0.02 O.CE 0.00 -0.10 [-0.47 |0.59 0.53 0.48
g — — —
R 11 R-1.0 l
0.0g 0.02 0.00 0.02 1.02 -0.10]0.66 -0.41 0.4f
«— —
l R1.0 R-1.0 l R-1.0
0.00 0.00 0.28 0.00 O.QP 0.81 0.73 -0.34 10.48

> ing l —
0.00 0.28 0.31 -0.65 -0.19 |-0. 0.6 0.59 0.53
R fo |04 |oep |oso |os:

0.28 |0.31]0.35 |0.39 |0.43 |0.48 |0.53 0.5? 0.?} 0.:1_?

—_ —| = —| — —| —

«— «— “—
R-1.0 l

R-1.0 R-1.0

0.0& 0.2& 0.34_’ 0.3& 0.3& 0.4& 0.4& 0.5? 0.:1_? 0.:1}
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld dp.html

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:

= Every iteration updates both the values and (implicitly) the policy
= We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

= We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

= After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
" The new policy will be better (or we’re done)

Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

= S0 you want to....

= Compute optimal values: use value iteration or policy iteration

Value lteration

() o

Policy Iteration —P@

= Compute values for a particular policy: use policy evaluation

@—V Policy Evaluation

" Turn your values into a policy: use policy extraction (one-step lookahead)

-0

Policy Extraction

o

Summary: Bellman Equation Zoo!

= Optimal V and Q value functions:

V*(s) = mO?XZT(S,a,, s") {R(s,a, s + ny*(s/)} V*i(s) = max Q*(s,a)

Q*(s,a) = z T(s,a,s") [R(s, a,s')+y max Q*(s’, a’)]

= Value function for fixed policy m:

VT(s) =) T(s,m(s),s)R(s,7(s),8) +~V"(s)]

= Policy m for V and Q value functions:
7*(s) = arg maxz T(s,a,s)[R(s,a,s) +~V*(s)]
a /

S
m*(s) = argmaxQ*(s,a)
a

Next Time: Reinforcement Learning!

Extra Time: Convergence*

(won’t be on exams or homeworks)

= How do we know the V, vectors are going to converge?

Vi(s) Vit1(s)

" Proof sketch (assuming discount O<y<1):

For any state V, and V,,; can be viewed as depth k+1
expectimax results in nearly identical search trees

The difference is that on the bottom layer, V,,; has actual
rewards while V| has zeros

That last layer is at best all Ryax

It is at worst Ry

But everything is discounted by y* that far out

So V| and V,,; are at most y* max|R| different

So as k increases, the values converge / \ / \

