
Announcements

 HW4 + Self-assessment HW3 due tonight

 Electronic HW4

 Written HW4

 Self-assessment HW3

 Homework 5

 To be released soon, due Tuesday 10/8 at 11:59pm

 Project 3: RL

 To be released soon, due Thursday 10/10 at 11:59pm (short fuse!)

 Midterm: Thursday 10/17 at 7pm

CS 188: Artificial Intelligence
Reinforcement Learning

Instructors: Pieter Abbeel and Igor Mordatch

University of California, Berkeley
[Many of these slides were originally created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley]

Reinforcement Learning

 Still assume a Markov decision process (MDP):

 A set of states s S

 A set of actions (per state) A

 A model T(s,a,s’)

 A reward function R(s,a,s’)

 Still looking for a policy (s)

 New twist: don’t know T or R

 I.e. we don’t know which states are good or what the actions do

 Must try out actions and states to learn
 Q1: How to learn from things tried? (today, Passive Reinforcement Learning)

 Q2: What to decide to try? (Thursday, Active Reinforcement Learning)

Classical Reinforcement Learning Diagram

 Basic idea:
 Must (learn to) act so as to maximize expected rewards

 All learning is based on observed samples of outcomes!

Environment
= MDP

Agent

Actions: a
State: s

Reward: r

Example: Learning to Walk

[DayDreamer, Philipp Wu, Ale Escontrela, Danijar Hafner, Ken Goldberg, Pieter Abbeel, CoRL 2022]

Example: Sidewinding

[Andrew Ng] [Video: SNAKE – climbStep+sidewinding]

The 188 Crawler Bot!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]

Video of Demo Crawler Bot

Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning

Overview of RL topics we’ll cover

 Passive RL – how to learn to act from data
 Model-based RL

 Note: ~equally important as model-free RL, simpler conceptually, hence will take less time / slides

 Model-free RL

 Sample-based policy evaluation for Value learning (“monte carlo value estimates”)

 Temporal Difference Value learning (“TD learning”)

 Temporal Difference Q-Value learning (“Q learning”)

 Active RL – how to act to collect data
 i.e. Exploration (vs. Exploitation)

 Scaling up RL
 Approximate Q learning

 Case studies

Model-Based Learning

Model-Based Reinforcement Learning

 Model-Based Idea:
 Learn an approximate model based on experiences
 Solve for values as if the learned model were correct

 Step 1: Learn empirical MDP model
 Count outcomes s’ for each s, a
 Normalize to give an estimate of
 Discover each when we experience (s, a, s’)

 Step 2: Solve the learned MDP
 For example, use value iteration, as before

 Step 3: Run the learned policy
 If happy with result, all done
 If not happy, add the data (s, a, r, s’) to data set and go back to Step 1

Example of Learning Empirical MDP Model

Input Policy

Assume: = 1

Observed Episodes (Training) Learned MDP Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…

Learning to Walk – was done with model-based RL

[DayDreamer, Philipp Wu, Ale Escontrela, Danijar Hafner, Ken Goldberg, Pieter Abbeel, CoRL 2022]

Overview of RL topics we’ll cover

 Passive RL – how to learn to act from data
 Model-based RL

 Note: ~equally important as model-free RL, simpler conceptually, hence will take less time / slides

 Model-free RL

 Sample-based policy evaluation for Value learning (“monte carlo value estimates”)

 Temporal Difference Value learning (“TD learning”)

 Temporal Difference Q-Value learning (“Q learning”)

 Active RL – how to act to collect data
 i.e. Exploration (vs. Exploitation)

 Scaling up RL
 Approximate Q learning

 Case studies

Model-Free Reinforcement Learning

Policy Evaluation: Problem Setting

 Simplified task: policy evaluation
 Input: a fixed policy (s)

 You don’t know the transitions T(s,a,s’)

 You don’t know the rewards R(s,a,s’)

 Goal: learn the state values

 In this case:
 Learner is “along for the ride”

 No choice about what actions to take

 Just execute the policy and learn from experience

 This is NOT offline planning! You actually take actions in the world.

Policy Evaluation: Direct evaluation from samples

 Goal: Compute values for each state under

 Idea: Average together observed sample values

 Act according to

 Every time you visit a state, write down what the
sum of discounted rewards turned out to be

 Average those samples

 This is called direct evaluation

Example: Direct evaluation from samples

Input Policy

Assume: = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

+8 +4 +10

-10

-2

Problems with Direct Evaluation

 What’s good about direct evaluation?

 It’s easy to understand

 It doesn’t require any knowledge of T, R

 It eventually computes the correct average values,
using just sample transitions

 What bad about it?

 It wastes information about state connections

 Each state must be learned separately

 So, it takes a long time to learn

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C
under this policy, how can
their values be different?

Why Not Use Bellman Updates?

 Simplified Bellman updates calculate V for a fixed policy:
 Each round, replace V with a one-step-look-ahead layer over V

 This approach fully exploited the connections between the states
 Unfortunately, we need T and R to do it!

 Key question: how can we do this update to V without knowing T and R?
 In other words, how to we take a weighted average without knowing the weights?

(s)

s

s, (s)

s, (s),s’

s’

Sample-Based Bellman Updates?

 We want to improve our estimate of V by computing these averages:

 Idea: Take samples of outcomes s’ (by doing the action!) and average

(s)

s

s, (s)

s1's2' s3'

s, (s),s’

s'

Almost! But we can’t
rewind time to get sample
after sample from state s.

Temporal Difference Learning

Temporal Difference Learning

 Big idea: learn from every experience!
 Update V(s) each time we experience a transition (s, a, s’, r)

 Likely outcomes s’ will contribute updates more often

 Temporal difference learning of values
 Policy still fixed, still doing evaluation!

 Move values toward value of whatever successor occurs: running average

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Same update:

Exponential Moving Average

 Exponential moving average

 The running interpolation update:

 Makes recent samples more important:

 Forgets about the past (distant past values were wrong anyway)

 Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

Assume: = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

Problems with TD Value Learning

 TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

 However, if we want to turn values into a (new) policy, we’re sunk:

 Idea: learn Q-values, not values

 Makes action selection model-free too!

a

s

s, a

s,a,s’

s’

Recall: Q-Value Iteration

 Value iteration: find successive (depth-limited) values
 Start with V0(s) = 0, which we know is right
 Given Vk, calculate the depth k+1 values for all states:

 But Q-values are more useful, so compute them instead
 Start with Q0(s,a) = 0, which we know is right
 Given Qk, calculate the depth k+1 q-values for all q-states:

Q-Learning

 Q-Learning: sample-based Q-value iteration

 Learn Q(s,a) values as you go

 Receive a sample (s,a,s’,r)

 Consider your old estimate:

 Consider your new sample estimate:

 Incorporate the new estimate into a running average:

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

Q-Learning Properties

 Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

 This is called off-policy learning

 Caveats:

 You have to explore enough

 You have to eventually make the learning rate

small enough

 … but not decrease it too quickly

 Basically, in the limit, it doesn’t matter how you select actions (!)

Overview of RL topics we’ll cover

 Passive RL – how to learn to act from data
 Model-based RL

 Note: ~equally important as model-free RL, simpler conceptually, hence will take less time / slides

 Model-free RL

 Sample-based policy evaluation for Value learning (“monte carlo value estimates”)

 Temporal Difference Value learning (“TD learning”)

 Temporal Difference Q-Value learning (“Q learning”)

 Active RL – how to act to collect data
 i.e. Exploration (vs. Exploitation)

 Scaling up RL
 Approximate Q learning

 Case studies

Active Reinforcement Learning

Active Reinforcement Learning

 Full reinforcement learning: optimal policies (like value iteration)
 You don’t know the transitions T(s,a,s’)

 You don’t know the rewards R(s,a,s’)

 You choose the actions now

 Goal: learn the optimal policy / values

 In this case:
 Learner makes choices!

 Fundamental tradeoff: exploration vs. exploitation

 This is NOT offline planning! You actually take actions in the world and
find out what happens…

Q-Learning

 We’d like to do Q-value updates to each Q-state:

 But can’t compute this update without knowing T, R

 Instead, compute average as we go
 Receive a sample transition (s,a,r,s’)

 This sample suggests

 But we want to average over results from (s,a) (Why?)

 So keep a running average

Q-Learning Properties

 Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

 This is called off-policy learning

 Caveats:

 You have to explore enough

 You have to eventually make the learning rate

small enough

 … but not decrease it too quickly

 Basically, in the limit, it doesn’t matter how you select actions (!)

[Demo: Q-learning – auto – cliff grid (L11D1)]

Video of Demo Q-Learning Auto Cliff Grid

Exploration vs. Exploitation

How to Explore?

 Several schemes for forcing exploration
 Simplest: random actions (-greedy)

 Every time step, flip a coin

 With (small) probability , act randomly

 With (large) probability 1-, act on current policy

 Problems with random actions?
 You do eventually explore the space, but keep

thrashing around once learning is done

 One solution: lower over time

 Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)]
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]

Video of Demo Q-learning – Manual Exploration – Bridge Grid

Video of Demo Q-learning – Epsilon-Greedy – Crawler

Exploration Functions

 When to explore?

 Random actions: explore a fixed amount

 Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

 Exploration function

 Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g.

 Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

Video of Demo Q-learning – Exploration Function – Crawler

Regret

 Even if you learn the optimal policy,
you still make mistakes along the way!

 Regret is a measure of your total
mistake cost: the difference between
your (expected) rewards, including
youthful suboptimality, and optimal
(expected) rewards

 Minimizing regret goes beyond
learning to be optimal – it requires
optimally learning to be optimal

 Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret

Overview of RL topics we’ll cover

 Passive RL – how to learn to act from data
 Model-based RL

 Note: ~equally important as model-free RL, simpler conceptually, hence will take less time / slides

 Model-free RL

 Sample-based policy evaluation for Value learning (“monte carlo value estimates”)

 Temporal Difference Value learning (“TD learning”)

 Temporal Difference Q-Value learning (“Q learning”)

 Active RL – how to act to collect data
 i.e. Exploration (vs. Exploitation)

 Scaling up RL
 Approximate Q learning

 Case studies

