Announcements

- HW4 + Self-assessment HW3 due tonight
	- **Electronic HW4**
	- Written HW4
	- Self-assessment HW3
- **Homework 5**
	- To be released soon, due Tuesday 10/8 at 11:59pm
- Project 3: RL
	- To be released soon, due Thursday 10/10 at 11:59pm (short fuse!)
- **Midterm: Thursday 10/17 at 7pm**

Instructors: Pieter Abbeel and Igor Mordatch

University of California, Berkeley

[Many of these slides were originally created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley]

Reinforcement Learning

- Still assume a Markov decision process (MDP):
	- \blacksquare A set of states s \in S
	- A set of actions (per state) A
	- A model $T(s,a,s')$
	- A reward function $R(s,a,s')$
- Still looking for a policy $\pi(s)$

- New twist: don't know T or R
	- I.e. we don't know which states are good or what the actions do
	- Must try out actions and states to learn
		- Q1: How to learn from things tried? (today, Passive Reinforcement Learning)
		- Q2: What to decide to try? (Thursday, Active Reinforcement Learning)

Classical Reinforcement Learning Diagram

- **Basic idea:**
	- Must (learn to) act so as to maximize expected rewards
	- All learning is based on observed samples of outcomes!

Example: Learning to Walk

[DayDreamer, Philipp Wu, Ale Escontrela, Danijar Hafner, Ken Goldberg, Pieter Abbeel, CoRL 2022]

Example: Sidewinding

[Andrew Ng] [Video: SNAKE – climbStep+sidewinding]

The 188 Crawler Bot!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]

Video of Demo Crawler Bot

Offline (MDPs) vs. Online (RL)

Offline Solution **Online Learning**

Overview of RL topics we'll cover

Passive RL – how to learn to act from data

- Model-based RL
	- Note: ~equally important as model-free RL, simpler conceptually, hence will take less time / slides
- Model-free RL
	- Sample-based policy evaluation for Value learning ("monte carlo value estimates")
	- Temporal Difference Value learning ("TD learning")
	- Temporal Difference Q-Value learning ("Q learning")
- Active RL how to act to collect data
	- i.e. Exploration (vs. Exploitation)
- Scaling up RL
	- **Approximate Q learning**
- Case studies

Model-Based Learning

Model-Based Reinforcement Learning

- Model-Based Idea:
	- **EXTER** Learn an approximate model based on experiences
	- Solve for values as if the learned model were correct
- Step 1: Learn empirical MDP model
	- Count outcomes s' for each s, a
	- Normalize to give an estimate of $\widehat{T}(s, a, s')$
	- Discover each $\widehat{R}(s, a, s')$ when we experience (s, a, s')
- Step 2: Solve the learned MDP
	- **For example, use value iteration, as before**
- Step 3: Run the learned policy
	- If happy with result, all done
	- If not happy, add the data (s, a, r, s') to data set and go back to Step 1

Example of Learning Empirical MDP Model

Learning to Walk – was done with model-based RL

[DayDreamer, Philipp Wu, Ale Escontrela, Danijar Hafner, Ken Goldberg, Pieter Abbeel, CoRL 2022]

Overview of RL topics we'll cover

Passive RL – how to learn to act from data

- Model-based RL
	- Note: ~equally important as model-free RL, simpler conceptually, hence will take less time / slides
- *Model-free RL*
	- **Sample-based policy evaluation for Value learning ("monte carlo value estimates")**
	- **Temporal Difference Value learning ("TD learning")**
	- **Temporal Difference Q-Value learning ("Q learning")**
- Active RL how to act to collect data
	- i.e. Exploration (vs. Exploitation)
- Scaling up RL
	- **Approximate Q learning**
- Case studies

Model-Free Reinforcement Learning

Policy Evaluation: Problem Setting

Simplified task: policy evaluation

- Input: a fixed policy $\pi(s)$
- You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- Goal: learn the state values

In this case:

- Learner is "along for the ride"
- No choice about what actions to take
- Just execute the policy and learn from experience
- This is NOT offline planning! You actually take actions in the world.

Policy Evaluation: Direct evaluation from samples

- Goal: Compute values for each state under π
- Idea: Average together observed sample values
	- Act according to π
	- Every time you visit a state, write down what the sum of discounted rewards turned out to be
	- Average those samples
- This is called direct evaluation

Example: Direct evaluation from samples

Problems with Direct Evaluation

- What's good about direct evaluation?
	- It's easy to understand
	- It doesn't require any knowledge of T, R
	- It eventually computes the correct average values, using just sample transitions
- What bad about it?
	- It wastes information about state connections
	- \blacksquare Each state must be learned separately
	- So, it takes a long time to learn

Output Values

If B and E both go to C under this policy, how can their values be different?

Why Not Use Bellman Updates?

 $\pi(s)$

s, $\pi(s)$

s'

 s , $\mathsf{\hat{\pi}}(\mathsf{s})$,s'

s

- Simplified Bellman updates calculate V for a fixed policy:
	- Each round, replace V with a one-step-look-ahead layer over V

$$
V_0^{\pi}(s) = 0
$$

$$
V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]
$$

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!
- Key question: how can we do this update to V without knowing T and R?
	- In other words, how to we take a weighted average without knowing the weights?

Sample-Based Bellman Updates?

■ We want to improve our estimate of V by computing these averages:

$$
V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]
$$

■ Idea: Take samples of outcomes s' (by doing the action!) and average

$$
sample_1 = R(s, \pi(s), s'_1) + \gamma V_k^{\pi}(s'_1)
$$

\n
$$
sample_2 = R(s, \pi(s), s'_2) + \gamma V_k^{\pi}(s'_2)
$$

\n...
\n
$$
sample_n = R(s, \pi(s), s'_n) + \gamma V_k^{\pi}(s'_n)
$$

\n
$$
V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_i sample_i
$$

Temporal Difference Learning

Temporal Difference Learning

- **Big idea: learn from every experience!**
	- Update $V(s)$ each time we experience a transition (s, a, s', r)
	- Likely outcomes s' will contribute updates more often
- Temporal difference learning of values
	- Policy still fixed, still doing evaluation!
	- **Move values toward value of whatever successor occurs: running average**

 $sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$ Sample of V(s): $V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha) \text{sample}$ Update to V(s): $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$ Same update:

Exponential Moving Average

- **Exponential moving average**
	- **The running interpolation update:** $\bar{x}_n = (1 \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$
	- **Makes recent samples more important:**

$$
\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}
$$

- Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

 $V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + \alpha \left| R(s, \pi(s), s') + \gamma V^{\pi}(s') \right|$

Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, if we want to turn values into a (new) policy, we're sunk:

 $\pi(s) = \argmax_a Q(s, a)$ $Q(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V(s')]$

- Idea: learn Q-values, not values
- **Makes action selection model-free too!**

Recall: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
	- Start with $V_0(s) = 0$, which we know is right
	- Given V_{k} , calculate the depth k+1 values for all states:

$$
V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
$$

- But Q-values are more useful, so compute them instead
	- Start with $Q_0(s,a) = 0$, which we know is right
	- Given Q_k , calculate the depth k+1 q-values for all q-states:

$$
Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]
$$

Q-Learning

■ Q-Learning: sample-based Q-value iteration

$$
Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]
$$

- \blacksquare Learn Q(s,a) values as you go
	- Receive a sample (s,a,s',r)
	- **Consider your old estimate:** $Q(s, a)$
	- Consider your new sample estimate:

 $sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$

■ Incorporate the new estimate into a running average:

 $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha)$ [sample]

[Demo: Q-learning – gridworld (L10D2)] [Demo: Q-learning – crawler (L10D3)]

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
	- **P** You have to explore enough
	- You have to eventually make the learning rate small enough
	- … but not decrease it too quickly
	- Basically, in the limit, it doesn't matter how you select actions (!)

Overview of RL topics we'll cover

Passive RL – how to learn to act from data

- Model-based RL
	- Note: ~equally important as model-free RL, simpler conceptually, hence will take less time / slides
- Model-free RL
	- Sample-based policy evaluation for Value learning ("monte carlo value estimates")
	- Temporal Difference Value learning ("TD learning")
	- Temporal Difference Q-Value learning ("Q learning")

Active RL – how to act to collect data

- *i.e. Exploration (vs. Exploitation)*
- Scaling up RL
	- **Approximate Q learning**
- Case studies

Active Reinforcement Learning

Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
	- You don't know the transitions $T(s,a,s')$
	- You don't know the rewards $R(s,a,s')$
	- You choose the actions now
	- Goal: learn the optimal policy / values

In this case:

- Learner makes choices!
- Fundamental tradeoff: exploration vs. exploitation
- This is NOT offline planning! You actually take actions in the world and find out what happens…

Q-Learning

■ We'd like to do Q-value updates to each Q-state:

$$
Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]
$$

- But can't compute this update without knowing T, R
- **Instead, compute average as we go**
	- Receive a sample transition (s,a,r,s')
	- This sample suggests

 $Q(s, a) \approx r + \gamma \max_{a'} Q(s', a')$

- But we want to average over results from (s,a) (Why?)
- **So keep a running average**

$$
Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha)\left[r + \gamma \max_{a'} Q(s', a')\right]
$$

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
	- **P** You have to explore enough
	- You have to eventually make the learning rate small enough
	- … but not decrease it too quickly
	- Basically, in the limit, it doesn't matter how you select actions (!)

Video of Demo Q-Learning Auto Cliff Grid

Exploration vs. Exploitation

How to Explore?

- Several schemes for forcing exploration
	- Simplest: random actions (ε -greedy)
		- **Every time step, flip a coin**
		- \blacksquare With (small) probability ε , act randomly
		- \blacksquare With (large) probability 1- ε , act on current policy
	- **Problems with random actions?**
		- You do eventually explore the space, but keep thrashing around once learning is done
		- \blacksquare One solution: lower ε over time
		- **Another solution: exploration functions**

[Demo: Q-learning – manual exploration – bridge grid (L11D2)] [Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]

Video of Demo Q-learning – Manual Exploration – Bridge Grid

Video of Demo Q-learning – Epsilon-Greedy – Crawler

Exploration Functions

- When to explore?
	- Random actions: explore a fixed amount
	- Better idea: explore areas whose badness is not (yet) established, eventually stop exploring
- Exploration function
	- Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. $f(u, n) = u + k/n$

Regular Q-Update: $Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} Q(s', a')$

Modified Q-Update: $Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))$

■ Note: this propagates the "bonus" back to states that lead to unknown states as well!

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

Video of Demo Q-learning – Exploration Function – Crawler

Regret

- Even if you learn the optimal policy, you still make mistakes along the way!
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal
- **Example: random exploration and** exploration functions both end up optimal, but random exploration has higher regret

Overview of RL topics we'll cover

Passive RL – how to learn to act from data

- Model-based RL
	- Note: ~equally important as model-free RL, simpler conceptually, hence will take less time / slides
- Model-free RL
	- Sample-based policy evaluation for Value learning ("monte carlo value estimates")
	- Temporal Difference Value learning ("TD learning")
	- Temporal Difference Q-Value learning ("Q learning")
- Active RL how to act to collect data
	- i.e. Exploration (vs. Exploitation)
- Scaling up RL
	- **Approximate Q learning**
- Case studies