
CS 188: Artificial Intelligence
Reinforcement Learning II

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Reinforcement Learning: Overview of this week

Last Lecture:

§ Passive Reinforcement Learning: how to learn from already given experiences

§ Active Reinforcement Learning: how to collect new experiences

This Lecture:

§ Recap

§ Approximate Reinforcement Learning: to handle large state spaces

§ Case studies: game playing, robot locomotion, language assistants

Reinforcement Learning

§ We still assume an MDP:
§ A set of states s Î S
§ A set of actions (per state) A
§ A model T(s,a,s’)
§ A reward function R(s,a,s’)

§ Still looking for a policy p(s)

§ New twist: don’t know T or R, so must try out actions

§ Big idea: Compute all averages over T using sample outcomes

Model-Free Learning

§ Model-free (temporal difference) learning
§ Receive stream of experiences from the world:

§ Update estimates each transition

r

a
s

s, a

s’
a’

s’, a’

s’’

Model-Free Learning

§ Model-free (temporal difference) learning
§ Receive stream of experiences from the world:

§ Update estimates each transition

r

a
s

s, a

s’

Model-Free Learning

§ Model-free (temporal difference) learning
§ Receive stream of experiences from the world:

§ Update estimates each transition

r

a
s

s, a

s’
a’

s’, a’

s’’

Model-Free Learning

§ Model-free (temporal difference) learning
§ Receive stream of experiences from the world:

§ Update estimates each transition

Model-Free Learning

§ Model-free (temporal difference) learning
§ Receive stream of experiences from the world:

§ Update estimates each transition

§ Over time, updates will mimic Bellman updates

r

a
s

s, a

s’
a’

s’, a’

s’’

Q-Learning

§ Q-Iteration: do Q-value updates to each Q-state:
§ Initialize Q0(s,a) = 0, then iterate:

§ But can’t compute this update without knowing T, R

§ Q-Learning: Instead, compute average as we go
§ Receive a sample transition (s,a,r,s’)
§ This sample suggests:

§ But we want to average over results from (s,a)
§ So keep a running average:

[Demo: running average]

Video of Demo Q-Learning -- Gridworld

§ At each step:
§ Receive a sample transition (s,a,s’,r)
§ Update running average:

Q-Learning Properties

§ Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

§ Gives us optimal way to act! p*(s) = argmax Q(s,a)

§ This is called off-policy learning
§ Caveats:

§ You have to explore enough
§ You have to eventually make the learning rate
 small enough (but not decrease it too quickly)
§ Basically, in the limit, it doesn’t matter how you select actions (!)

[Demo: Q-learning – auto – cliff grid (L11D1)]

a

Exploration vs. Exploitation

How to Explore?

§ Several schemes for forcing exploration
§ Simplest: random actions (e-greedy)

§ Every time step, flip a coin
§ With (small) probability e, act randomly
§ With (large) probability 1-e, act on current policy

§ Problems with random actions?
§ You do eventually explore the space, but keep

thrashing around once learning is done
§ One solution: lower e over time
§ Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)]
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]

Exploration Functions
§ When to explore?

§ Random actions: explore a fixed amount
§ Better idea: explore areas whose badness is not
 (yet) established, eventually stop exploring

§ Exploration function
§ Takes a value estimate u and a visit count n, and
 returns an optimistic utility, e.g.

Modified Q-Update:

Regular Q-Update:

𝑥 ←! 𝑣	is shorthand for 𝑥 ← 1	 − 𝛼 𝑥 + 𝛼𝑣
[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

Random Actions vs Exploration Functions

Random Actions Exploration Function

[Plan Online, Learn Offline, Lowrey et al, 2019]

Blue: more visited

Red: less visited

How can we evaluate RL Methods?

Regret

§ Even if you learn the optimal policy,
you still make mistakes along the way!

§ Regret is a measure of your total
mistake cost:
§ Difference between all your (expected)

rewards, including youthful suboptimality,
and optimal (expected) rewards

§ Minimizing regret goes beyond
learning to be optimal – it requires
optimally learning to be optimal

§ For example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret

Are We Done?

§ Large and complex state spaces are still a problem!

Approximate Q-Learning

Generalizing Across States

§ Basic Q-Learning keeps a table of all q-values

§ In realistic situations, we cannot possibly learn
about every single state!
§ Too many states to visit them all in training
§ Too many states to hold the q-tables in memory

§ Instead, we want to generalize:
§ Learn about some small number of training states from

experience
§ Generalize that experience to new, similar situations
§ This is a fundamental idea in machine learning, and we’ll

see it over and over again

[demo – RL pacman]

Recall Lecture 2: State Space Sizes

§ World state:
§ Agent positions: 120
§ Food count: 30
§ Ghost positions: 12
§ Agent facing: NSEW

§ How many
§ World states?
 120x(230)x(122)x4
§ States for pathing?
 120
§ States for eat-all-dots?
 120x(230)

Example: Pacman

[Demo: Q-learning – pacman – tiny – watch all (L11D5)],[Demo: Q-learning – pacman – tiny – silent train (L11D6)], [Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Let’s say we discover
through experience

that this state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

Feature-Based Representations

§ Solution: describe a state using a vector of
features (properties) f1, f2, …
§ Features are functions from states to real numbers

(often 0/1) that capture important properties of the
state

§ Example features:
§ Distance to closest ghost
§ Distance to closest dot
§ Number of ghosts
§ 1 / (dist to dot)2

§ Is Pacman in a tunnel? (0/1)
§ …… etc.
§ Is it the exact state on this slide?

§ Can also describe a q-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

§ Using a feature representation f1, f2, … we can write a q function (or value function)
for any state using a few weights w1, w2, … :

§ Advantage: our experience is summed up in a few powerful numbers w1, w2, …
§ Disadvantage: states may share features but actually be very different in value!

§ Ex: these two states would have the same value if we don’t include ghost positions as a feature:

Approximate Q-Learning

§ Q-learning with linear Q-functions:

§ Intuitive interpretation:
§ Adjust weights of active features
§ E.g., if something unexpectedly bad happens, blame the features that were on:

disprefer all states with that state’s features

§ Formal justification: online least squares, gradient descent

Exact Q’s

Approximate Q’s

Approximate Q-Learning

§ Q-learning with linear Q-functions:

§ Example: Something unexpectedly good happens, and feature 𝑓! is on (positive)
§ Raise Q value for current 𝑠, 𝑎 and in the future prefer all states where 𝑓" is on

Approximate Q-Learning

§ Q-learning with linear Q-functions:

§ Example: Something unexpectedly bad happens, and feature 𝑓! is on (positive)
§ Lower Q value for current 𝑠, 𝑎 and in the future avoid all states where 𝑓" is on

Example: Q-Pacman

[Demo: approximate Q-
learning pacman (L11D10)]

Video of Demo Approximate Q-Learning -- Pacman

Policy Search

Policy Search

§ Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best
§ Q-learning’s priority: get Q-values close (modeling)
§ Action selection priority: get ordering of Q-values right (prediction)
§ We’ll see this distinction between modeling and prediction again later in the course

§ Solution: learn policies p that maximize rewards, not the Q values that predict them

§ Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
on feature weights

Policy Search

§ Simplest policy search:
§ Start with an initial linear value function or Q-function
§ Nudge each feature weight up and down and see if your policy is better than before

§ Problems:
§ How do we tell the policy got better?
§ Need to run many sample episodes!
§ If there are a lot of features, this can be impractical

§ Better methods exploit lookahead structure, sample wisely, change
multiple parameters…
§ Policy Gradient, Proximal Policy Optimization (PPO) are examples

Policy Gradient*

§ Simplest version:
§ Start with initial policy 𝜋(𝑠) that assigns probability to each action
§ Sample actions according to policy 𝜋
§ Update policy:

§ If an episode led to high utility, make sampled actions more likely
§ If an episode led to low utility, make sampled actions less likely

[Demo: policy gradient]

Case Studies of Reinforcement Learning!

§ Atari game playing

§ Robot Locomotion

§ Language assistants

Case Studies: Atari Game Playing

Case Studies: Atari Game Playing

[Human-level control through deep reinforcement learning,
Mnih et al, 2015]

§ MDP:
§ State: image of game screen

§ 25684*84 possible states
§ Processed with hand-designed feature vectors or

neural networks

§ Action: combination of arrow keys + button (18)
§ Transition T: game code (don’t have access)
§ Reward R: game score (don’t have access)

§ Very similar to our pacman MDP
§ Use approximate Q learning with neural

networks and ε-greedy exploration to solve

Case Studies: Robot Locomotion

[Extreme Parkour with Legged Robots, Cheng et al, 2023]

Case Studies: Robot Locomotion

§ MDP:
§ State: image of robot camera + N joint angles + accelerometer + …

§ Angles are N-dimensional continuous vector!
§ Processed with hand-designed feature vectors or neural networks

§ Action: N motor commands (continuous vector!)
§ Can’t easily compute max

#
𝑄(𝑠′, 𝑎)	when 𝑎 is continuous

§ Use policy search methods or adapt Q learning to continuous actions

§ Transition T: real world (don’t have access)
§ Reward R: hand-designed rewards

§ Stay upright, keep forward velocity, etc

§ Learning in the real world may be slow and unsafe
§ Build a simulator and learn there first, then deploy in real world

Case Studies: Language Assistants

[OpenAI]

Case Studies: Language Assistants

§ Step 1: train large language model to mimic human-written text
§ Query: “What is population of Berkeley?”
§ Human-like completion: “This question always fascinated me!”

§ Step 2: fine-tune model to generate helpful text
§ Query: “What is population of Berkeley?”
§ Helpful completion: “It is 117,145 as of 2021 census”

§ Use Reinforcement Learning in Step 2

Case Studies: Language Assistants

§ MDP:
§ State: sequence of words seen so far (ex. “What is population of Berkeley? ”)

§ 100,0001,000 possible states
§ Huge, but can be processed with feature vectors or neural networks

§ Action: next word (ex. “It”, “chair”, “purple”, …) (so 100,000 actions)
§ Hard to compute max

#
𝑄(𝑠′, 𝑎) when max is over 100K actions!

§ Transition T: easy, just append action word to state words
§ s: “My name“ a: “is“ s’: “My name is“

§ Reward R: ???
§ Humans rate model completions (ex. “What is population of Berkeley? ”)

§ “It is 117,145“: +1 “It is 5“: -1 “Destroy all humans“: -1

§ Learn a reward model 4𝑅 and use that (model-based RL)

§ Often use policy gradient (Proximal Policy Optimization) but looking into Q Learning

Conclusion

§ We’re done with parts I & II!

§ We’ve seen how AI methods can solve
problems in:
§ Search
§ Constraint Satisfaction Problems
§ Games
§ Markov Decision Problems
§ Reinforcement Learning

§ Next up: Part III: Uncertainty and Learning!

