
Announcements: Midterm

 This Thursday, October 17, 2024, 7-9 PM PT.

 If you need to take the alternate exam (same day, 9-11 PM PT, in-person only) or if you need DSP 
accommodations and you have not filled out the alternate exam request form, send us an email at 
cs188@berkeley.edu immediately.

 Topics: 

 Search, CSPs, Games, MDPs, Reinforcement Learning, and Bayes Nets (only up to representation). These were 
covered in: Lectures 1-13, Notes 1-6.4, Discussions 1-5, Projects 1-3, and Homeworks 1-5.

 Format: 

 Closed-book, closed-notes, and closed-internet. No calculators are allowed (no questions require a calculator). 
However, you may use 1 cheat sheet (two-sided) of your own design, handwritten or typed.

 Room Assignment: was emailed to you by Saturday, October 12th

 If you did not receive an email yet, or if you are supposed to be taking an alternate exam and your email did 
not indicate that, send an email to cs188@berkeley.edu.

 Please try to arrive early, so that we can start on time.

 Check Ed in case of any further announcements



CS 188: Artificial Intelligence

Bayes’ Nets: Independence

Instructors: Pieter Abbeel & Igor Mordatch --- University of California, Berkeley
[Many of these slides were originally created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.]



Probability Recap

 Conditional probability

 Product rule

 Chain rule 

 X, Y independent if and only if:

 X and Y are conditionally independent given Z if and only if:



Bayes’ Nets

 A Bayes’ net is an

efficient encoding

of a probabilistic

model of a domain

 Questions we can ask:

 Modeling: what BN is most appropriate for a given domain?

 Representation: given a BN graph, what kinds of distributions can it encode?

 Inference: given a fixed BN, what is P(X | e)?



Bayes’ Net Semantics

 A directed, acyclic graph, one node per random variable

 A conditional probability table (CPT) for each node

 A collection of distributions over X, one for each combination 
of parents’ values

 Bayes’ nets implicitly encode joint distributions

 As a product of local conditional distributions

 To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:



Example: Alarm Network

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99

B E

A

MJ
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Size of a Bayes’ Net

 How big is a joint distribution over N 
Boolean variables?

2N

 How big is an N-node net if nodes 
have up to k parents?

O(N * 2k+1)

 Both give you the power to calculate

 BNs: Huge space savings!

 Also easier to elicit local CPTs

 Also faster to answer queries (coming)



Bayes’ Nets

 Representation

 Conditional Independences

 Probabilistic Inference

 Learning Bayes’ Nets from Data



Conditional Independence

 X and Y are independent if

 X and Y are conditionally independent given Z

 (Conditional) independence is a property of a distribution

 Example: 



Bayes Nets: Assumptions

 Assumptions we are required to make to define the 
Bayes net when given the graph:

 Beyond above “chain rule  Bayes net” conditional 
independence assumptions 

 Often additional conditional independences

 They can be read off the graph

 Important for modeling: understand assumptions made 
when choosing a Bayes net graph



Example

 Conditional independence assumptions directly from simplifications in chain rule:

 Additional implied conditional independence assumptions?

X Y Z W



Independence in a BN

 Important question about a BN:
 Are two nodes independent given certain evidence?

 If yes, can prove using algebra (tedious in general)

 If no, can prove with a counter example

 Example:

 Question: for this BN graph, are X and Z necessarily independent?*
 Answer: no.  Example: low pressure causes rain, which causes traffic.

 X can influence Z, Z can influence X (via Y)

 Addendum: they could be independent: how?

X Y Z

* Equivalent phrasing: for this BN graph, are X and Z guaranteed to be independent no matter the choice of CPTs



D-separation



D-separation: Overview

 D-separation: 

 a condition / algorithm for answering conditional independence 
queries from just studying the graph

 How:

 Study independence properties for triples

 Analyze complex cases as composition of triples



Triple Type 1: Causal Chains

 This configuration is a “causal chain”

X: Low pressure          Y: Rain                          Z: Traffic

 Guaranteed X independent of Z ?  No!

 One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

 Example:

 Low pressure causes rain causes traffic,
high pressure causes no rain causes no 
traffic

 In numbers:

P( +y | +x ) = 1, P( -y | - x ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1



Triple Type 1: Causal Chains

 This configuration is a “causal chain”  Guaranteed X independent of Z given Y?

 Evidence along the chain “blocks” the 
influence

Yes!

X: Low pressure          Y: Rain                          Z: Traffic



Triple Type 2: Common Cause

 This configuration is a “common cause”  Guaranteed X independent of Z ?  No!

 One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

 Example:

 Project due causes both forums busy 
and lab full 

 In numbers:

P( +x | +y ) = 1, P( -x | -y ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1

Y: Project 
due

X: Forums 
busy

Z: Lab full



Triple Type 2: Common Cause

 This configuration is a “common cause”  Guaranteed X and Z independent given Y?

 Observing the cause blocks influence 
between effects.

Yes!

Y: Project 
due

X: Forums 
busy

Z: Lab full



Triple Type 3: Common Effect

 Last configuration: two causes of one 
effect (v-structures)

Z: Traffic

 Are X and Y independent?

 Yes: the ballgame and the rain cause traffic, but 
they are not correlated

 Still need to prove they must be (try it!)

 Are X and Y independent given Z?

 No: seeing traffic puts the rain and the ballgame in 
competition as explanation.

 This is backwards from the other cases

 Observing an effect activates influence between 

possible causes.

X: Raining Y: Ballgame



Recap of Triples

Active Triples Inactive Triples

Causal Chain:

Common Cause:

Common Effect (“v-structure”)



The General Case



The General Case

 General question: in a given BN, are two variables independent 
(given evidence)?

 Solution: analyze the graph

 Each path can be seen as
repetitions of the three canonical cases



From Triples to Paths to D-Separation

 A path is active if each (overlapping) triple is active:

Note: e.g. for a path A – B – C – D – E, the triples are:

A – B – C, B – C – D, C – D – E 

Note: all it takes to block a path is a single inactive segment

 Are X and Y “D-separated” given evidence variables {Z}?
 Consider all (undirected) paths from X to Y
 If none of the paths are active, then X and Y are D-separated given {Z}
 On the other hand, if there is at least one active path, then X and Y are 

not D-separated given {Z}

 Independence and D-separation:
X and Y are guaranteed conditionally independent given {Z} 
IF AND ONLY IF
X and Y are d-separated given {Z}

 just need to check the graph

Active Triples Inactive Triples



Example
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Example

 Variables:

 R: Raining

 T: Traffic

 D: Roof drips

 S: I’m sad

 Questions:

T

S

D

R

Yes



Structure Implications

 Given a Bayes net structure, can run d-
separation algorithm to build a complete list of 
conditional independences that are necessarily 
true of the form

 This list determines the set of probability 
distributions that can be represented 



Computing All Independences
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Topology Limits Distributions

 Given some graph topology 
G, only certain joint 
distributions can be 
encoded

 The graph structure 
guarantees certain 
(conditional) independences

 (There might be more 
independence)

 Adding arcs increases the 
set of distributions, but has 
several costs

 Full conditioning can encode 
any distribution
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Bayes Nets Representation Summary

 Bayes nets compactly encode joint distributions

 Guaranteed independencies of distributions can be 
deduced from BN graph structure

 D-separation gives precise conditional independence 
guarantees from graph alone

 A Bayes’ net’s joint distribution may have further 
(conditional) independence that is not detectable until 
you inspect its specific distribution



Bayes’ Nets

 Representation

 Conditional Independences

 Probabilistic Inference

 Enumeration (exact, exponential complexity)

 Variable elimination (exact, worst-case

exponential complexity, often better)

 Probabilistic inference is NP-complete

 Sampling (approximate)

 Learning Bayes’ Nets from Data


