
Announcements: Midterm

 This Thursday, October 17, 2024, 7-9 PM PT.

 If you need to take the alternate exam (same day, 9-11 PM PT, in-person only) or if you need DSP 
accommodations and you have not filled out the alternate exam request form, send us an email at 
cs188@berkeley.edu immediately.

 Topics: 

 Search, CSPs, Games, MDPs, Reinforcement Learning, and Bayes Nets (only up to representation). These were 
covered in: Lectures 1-13, Notes 1-6.4, Discussions 1-5, Projects 1-3, and Homeworks 1-5.

 Format: 

 Closed-book, closed-notes, and closed-internet. No calculators are allowed (no questions require a calculator). 
However, you may use 1 cheat sheet (two-sided) of your own design, handwritten or typed.

 Room Assignment: was emailed to you by Saturday, October 12th

 If you did not receive an email yet, or if you are supposed to be taking an alternate exam and your email did 
not indicate that, send an email to cs188@berkeley.edu.

 Please try to arrive early, so that we can start on time.

 Check Ed in case of any further announcements



CS 188: Artificial Intelligence

Bayes’ Nets: Independence

Instructors: Pieter Abbeel & Igor Mordatch --- University of California, Berkeley
[Many of these slides were originally created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.]



Probability Recap

 Conditional probability

 Product rule

 Chain rule 

 X, Y independent if and only if:

 X and Y are conditionally independent given Z if and only if:



Bayes’ Nets

 A Bayes’ net is an

efficient encoding

of a probabilistic

model of a domain

 Questions we can ask:

 Modeling: what BN is most appropriate for a given domain?

 Representation: given a BN graph, what kinds of distributions can it encode?

 Inference: given a fixed BN, what is P(X | e)?



Bayes’ Net Semantics

 A directed, acyclic graph, one node per random variable

 A conditional probability table (CPT) for each node

 A collection of distributions over X, one for each combination 
of parents’ values

 Bayes’ nets implicitly encode joint distributions

 As a product of local conditional distributions

 To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:



Example: Alarm Network

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99

B E

A

MJ
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Size of a Bayes’ Net

 How big is a joint distribution over N 
Boolean variables?

2N

 How big is an N-node net if nodes 
have up to k parents?

O(N * 2k+1)

 Both give you the power to calculate

 BNs: Huge space savings!

 Also easier to elicit local CPTs

 Also faster to answer queries (coming)



Bayes’ Nets

 Representation

 Conditional Independences

 Probabilistic Inference

 Learning Bayes’ Nets from Data



Conditional Independence

 X and Y are independent if

 X and Y are conditionally independent given Z

 (Conditional) independence is a property of a distribution

 Example: 



Bayes Nets: Assumptions

 Assumptions we are required to make to define the 
Bayes net when given the graph:

 Beyond above “chain rule  Bayes net” conditional 
independence assumptions 

 Often additional conditional independences

 They can be read off the graph

 Important for modeling: understand assumptions made 
when choosing a Bayes net graph



Example

 Conditional independence assumptions directly from simplifications in chain rule:

 Additional implied conditional independence assumptions?

X Y Z W



Independence in a BN

 Important question about a BN:
 Are two nodes independent given certain evidence?

 If yes, can prove using algebra (tedious in general)

 If no, can prove with a counter example

 Example:

 Question: for this BN graph, are X and Z necessarily independent?*
 Answer: no.  Example: low pressure causes rain, which causes traffic.

 X can influence Z, Z can influence X (via Y)

 Addendum: they could be independent: how?

X Y Z

* Equivalent phrasing: for this BN graph, are X and Z guaranteed to be independent no matter the choice of CPTs



D-separation



D-separation: Overview

 D-separation: 

 a condition / algorithm for answering conditional independence 
queries from just studying the graph

 How:

 Study independence properties for triples

 Analyze complex cases as composition of triples



Triple Type 1: Causal Chains

 This configuration is a “causal chain”

X: Low pressure          Y: Rain                          Z: Traffic

 Guaranteed X independent of Z ?  No!

 One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

 Example:

 Low pressure causes rain causes traffic,
high pressure causes no rain causes no 
traffic

 In numbers:

P( +y | +x ) = 1, P( -y | - x ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1



Triple Type 1: Causal Chains

 This configuration is a “causal chain”  Guaranteed X independent of Z given Y?

 Evidence along the chain “blocks” the 
influence

Yes!

X: Low pressure          Y: Rain                          Z: Traffic



Triple Type 2: Common Cause

 This configuration is a “common cause”  Guaranteed X independent of Z ?  No!

 One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

 Example:

 Project due causes both forums busy 
and lab full 

 In numbers:

P( +x | +y ) = 1, P( -x | -y ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1

Y: Project 
due

X: Forums 
busy

Z: Lab full



Triple Type 2: Common Cause

 This configuration is a “common cause”  Guaranteed X and Z independent given Y?

 Observing the cause blocks influence 
between effects.

Yes!

Y: Project 
due

X: Forums 
busy

Z: Lab full



Triple Type 3: Common Effect

 Last configuration: two causes of one 
effect (v-structures)

Z: Traffic

 Are X and Y independent?

 Yes: the ballgame and the rain cause traffic, but 
they are not correlated

 Still need to prove they must be (try it!)

 Are X and Y independent given Z?

 No: seeing traffic puts the rain and the ballgame in 
competition as explanation.

 This is backwards from the other cases

 Observing an effect activates influence between 

possible causes.

X: Raining Y: Ballgame



Recap of Triples

Active Triples Inactive Triples

Causal Chain:

Common Cause:

Common Effect (“v-structure”)



The General Case



The General Case

 General question: in a given BN, are two variables independent 
(given evidence)?

 Solution: analyze the graph

 Each path can be seen as
repetitions of the three canonical cases



From Triples to Paths to D-Separation

 A path is active if each (overlapping) triple is active:

Note: e.g. for a path A – B – C – D – E, the triples are:

A – B – C, B – C – D, C – D – E 

Note: all it takes to block a path is a single inactive segment

 Are X and Y “D-separated” given evidence variables {Z}?
 Consider all (undirected) paths from X to Y
 If none of the paths are active, then X and Y are D-separated given {Z}
 On the other hand, if there is at least one active path, then X and Y are 

not D-separated given {Z}

 Independence and D-separation:
X and Y are guaranteed conditionally independent given {Z} 
IF AND ONLY IF
X and Y are d-separated given {Z}

 just need to check the graph

Active Triples Inactive Triples



Example

Yes R

T

B

T’



Example

R

T

B

D

L

T’

Yes

Yes

Yes



Example

 Variables:

 R: Raining

 T: Traffic

 D: Roof drips

 S: I’m sad

 Questions:

T

S

D

R

Yes



Structure Implications

 Given a Bayes net structure, can run d-
separation algorithm to build a complete list of 
conditional independences that are necessarily 
true of the form

 This list determines the set of probability 
distributions that can be represented 



Computing All Independences
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Z



X

Y

Z

Topology Limits Distributions

 Given some graph topology 
G, only certain joint 
distributions can be 
encoded

 The graph structure 
guarantees certain 
(conditional) independences

 (There might be more 
independence)

 Adding arcs increases the 
set of distributions, but has 
several costs

 Full conditioning can encode 
any distribution

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z X

Y

Z X

Y

Z

X

Y

Z X

Y

Z X

Y

Z



Bayes Nets Representation Summary

 Bayes nets compactly encode joint distributions

 Guaranteed independencies of distributions can be 
deduced from BN graph structure

 D-separation gives precise conditional independence 
guarantees from graph alone

 A Bayes’ net’s joint distribution may have further 
(conditional) independence that is not detectable until 
you inspect its specific distribution



Bayes’ Nets

 Representation

 Conditional Independences

 Probabilistic Inference

 Enumeration (exact, exponential complexity)

 Variable elimination (exact, worst-case

exponential complexity, often better)

 Probabilistic inference is NP-complete

 Sampling (approximate)

 Learning Bayes’ Nets from Data


