CS 188: Artificial Intelligence

Bayes' Nets: Inference

Instructors: Pieter Abbeel and Igor Mordatch --- University of California, Berkeley

[Many of these slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.]

Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

 $P(X|a_1\ldots a_n)$

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example: Alarm Network

В		Е	А	P(A B,E)
+k)	+e	+a	0.95
+k)	+e	-a	0.05
+k)	-е	+a	0.94
+k)	-е	-a	0.06
-b)	+e	+a	0.29
-b)	+e	-a	0.71
-b)	-е	+a	0.001
-b)	-е	-a	0.999

[Demo: BN Applet]

Example: Alarm Network

Example: Alarm Network

Bayes' Nets

Representation

- Conditional Independences
- Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Inference is NP-complete
 - Sampling (approximate)
- Learning Bayes' Nets from Data

Inference

 Inference: calculating some useful quantity from a joint probability distribution

• Examples:

Posterior probability

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

- Most likely explanation:
 - $\operatorname{argmax}_q P(Q = q | E_1 = e_1 \dots)$

Inference by Enumeration

- General case:
 - Evidence variables:
 - Query* variable:
 - Hidden variables:
- $\begin{array}{c} E_1 \dots E_k = e_1 \dots e_k \\ Q \\ H_1 \dots H_r \end{array} \end{array} \begin{array}{c} X_1, X_2, \dots X_n \\ \hline All \text{ variables} \end{array}$
- We want:

* Works fine with multiple query variables, too

 $P(Q|e_1\ldots e_k)$

 Step 1: Select the entries consistent with the evidence

-3

- 1

5

 \odot

Pa

0.05

0.25

0.2

0.01

0.07

0.15

 $P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(\underbrace{Q, h_1 \dots h_r, e_1 \dots e_k}_{X_1, X_2, \dots X_n})$

Step 3: Normalize

 $Z = \sum_{q} P(Q, e_1 \cdots e_k)$ $P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$

Inference by Enumeration in Bayes' Net

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

 $P(B \mid +j,+m) \propto_B P(B,+j,+m)$

e,a

$$= \sum_{e,a} P(B, e, a, +j, +m)$$

= P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)PP(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)P(+m|-a)P(-a|B,-e)P(+j|-a)P(-a|B,-e)P(+j|-a)P(-a|B,-e)P(-a|B,

Inference by Enumeration?

Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables
- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration

First we'll need some new notation: factors

Factor Zoo

Factor Zoo I

Joint distribution: P(X,Y)

- Entries P(x,y) for all x, y
- Sums to 1

Selected joint: P(x,Y)

- A slice of the joint distribution
- Entries P(x,y) for fixed x, all y
- Sums to P(x)
- Number of capitals = dimensionality of the table

P(T,W)				
T W P				
hot	sun	0.4		
hot rain		0.1		
cold	sun	0.2		
cold	rain	0.3		

P(cold, W)

Т	W	Р
cold	sun	0.2
cold	rain	0.3

Factor Zoo II

- Single conditional: P(Y | x)
 - Entries P(y | x) for fixed x, all
 - Sums to 1

P(W|cold)

Т	W	Р
cold	sun	0.4
cold	rain	0.6

- Family of conditionals: $P(Y \mid X)$
 - Multiple conditionals
 - Entries P(y | x) for all x, y
 - Sums to |X|

P((W T))	
Т	W	Р	
hot	sun	0.8	$\begin{bmatrix} D(W/h, t) \end{bmatrix}$
hot	rain	0.2	P(W hot)
cold	sun	0.4	
cold	rain	0.6	P(W cold)

P(W|hot)

Factor Zoo III

- Specified family: P(y | X)
 - Entries P(y | x) for fixed y, but for all x
 - Sums to ... who knows!

P((rain	T)

Т	W	Р	
hot	rain	0.2	P(rain hot)
cold	rain	0.6	P(rain cold)

Factor Zoo Summary

- In general, when we write $P(Y_1 ... Y_N | X_1 ... X_M)$
 - It is a "factor," a multi-dimensional array
 - Its values are $P(y_1 \dots y_N | x_1 \dots x_M)$
 - Any assigned (=lower-case) X or Y is a dimension selected from the array

Example: Traffic Domain

- Random Variables
 - R: Raining
 - T: Traffic
 - L: Late for class!

$$P(L) = ?$$

= $\sum_{r,t} P(r,t,L)$
= $\sum_{r,t} P(r)P(t|r)P(L|t)$

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

P(R)			
+r 0.1			
-r 0.9			

D(D)

P(L T)				
+t	+	0.3		
+t	-	0.7		
-t	+	0.1		
-t	-	0.9		

- Any known values are selected
 - E.g. if we know $L = +\ell$, the initial factors are

$P(\cdot$	$+\ell $	T)
+t	+	0.3
-t	+	0.1

 \mathbf{D} (1)

Procedure: Join all factors, eliminate all hidden variables, normalize

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
 - Just like a database join
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved

Example: Join on R

Computation for each entry: pointwise products
 $orall r_i$

 $\forall r, t : P(r, t) = P(r) \cdot P(t|r)$

Example: Multiple Joins

Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
 - Shrinks a factor to a smaller one
 - A projection operation
- Example:

+t	0.17
-t	0.83

Multiple Elimination

Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

Marginalizing Early (= Variable Elimination)

Traffic Domain

Variable Elimination

Marginalizing Early! (aka VE)

Evidence

If evidence, start with factors that select that evidence

• With no evidence, these are the initial factors:

P(.	L T)
+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

D(T|m)

• For computing. P(L|+r), the initial factors become:

P(+r) P		P(T +r)				
+r	0.1		+r	+t	0.8 0.2	
			+r	-t	0.2	

$$\begin{array}{c|c} P(L|T) \\ \hline +t & +l & 0.3 \\ \hline +t & -l & 0.7 \\ \hline -t & +l & 0.1 \\ \hline -t & -l & 0.9 \end{array}$$

 \sim

We eliminate all vars other than query + evidence

Evidence II

- Result will be a selected joint of query and evidence
 - E.g. for P(L | +r), we would end up with:

- To get our answer, just normalize this!
- That's it!

General Variable Elimination

• Query:
$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H_i
 - Join all factors mentioning H_i
 - Eliminate (sum out) H_i
- Join all remaining factors and normalize

Example

$$P(B)$$
 $P(E)$ $P(j,m|B,E)$

Example

Same Example in Equations

 $P(B|j,m) \propto P(B,j,m)$

$$P(B)$$
 $P(E)$ $P(A|B,E)$ $P(j|A)$ $P(m|A)$

 $P(B|j,m) \propto P(B,j,m)$

$$=\sum_{e,a}P(B,j,m,e,a)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e} P(B)P(e) \sum_{a} P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e} P(B)P(e)f_1(B, e, j, m)$$

$$= P(B)\sum_{e} P(e)f_1(B, e, j, m)$$
$$= P(B)f_2(B, j, m)$$

marginal obtained from joint by summing out use Bayes' net joint distribution expression use x*(y+z) = xy + xz

Α

Μ

joining on a, and then summing out gives f_1

use
$$x^*(y+z) = xy + xz$$

joining on e, and then summing out gives f_2

All we are doing is exploiting uwy + uwz + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!

Another Variable Elimination Example

Query: $P(X_3|Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$

Start by inserting evidence, which gives the following initial factors:

 $p(Z)p(X_1|Z)p(X_2|Z)p(X_3|Z)p(y_1|X_1)p(y_2|X_2)p(y_3|X_3)$

Eliminate X_1 , this introduces the factor $f_1(Z, y_1) = \sum_{x_1} p(x_1|Z)p(y_1|x_1)$, and we are left with:

 $p(Z)f_1(Z, y_1)p(X_2|Z)p(X_3|Z)p(y_2|X_2)p(y_3|X_3)$

Eliminate X_2 , this introduces the factor $f_2(Z, y_2) = \sum_{x_2} p(x_2|Z)p(y_2|x_2)$, and we are left with:

 $p(Z)f_1(Z, y_1)f_2(Z, y_2)p(X_3|Z)p(y_3|X_3)$

Eliminate Z, this introduces the factor $f_3(y_1, y_2, X_3) = \sum_z p(z) f_1(z, y_1) f_2(z, y_2) p(X_3|z)$, and we are left:

 $p(y_3|X_3), f_3(y_1, y_2, X_3)$

No hidden variables left. Join the remaining factors to get:

 $f_4(y_1, y_2, y_3, X_3) = P(y_3|X_3)f_3(y_1, y_2, X_3).$

Normalizing over X_3 gives $P(X_3|y_1, y_2, y_3)$.

Computational complexity critically depends on the largest factor being generated in this process. Size of factor = number of entries in table. In example above (assuming binary) all factors generated are of size 2 --- as they all only have one variable (Z, Z, and X₃ respectively).

Variable Elimination Ordering

For the query P(X_n|y₁,...,y_n) work through the following two different orderings as done in previous slide: Z, X₁, ..., X_{n-1} and X₁, ..., X_{n-1}, Z. What is the size of the maximum factor generated for each of the orderings?

- Answer: 2ⁿ⁺¹ versus 2² (assuming binary)
- In general: the ordering can greatly affect efficiency.

VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ vs. 2
- Does there always exist an ordering that only results in small factors?
 - No!

Worst Case Complexity?

CSP:

 $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_6 \lor \neg x_7) \land$

- If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.
- Hence inference in Bayes' nets is NP-hard. No known efficient probabilistic inference in general.

Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees you can always find an ordering that is efficient
 - Try it!!
- Cut-set conditioning for Bayes' net inference
 - Choose set of variables such that if removed only a polytree remains
 - Exercise: Think about how the specifics would work out!

Bayes' Nets

- Representation
- Conditional Independences
- Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - ✓ Inference is NP-complete
 - Sampling (approximate)
- Learning Bayes' Nets from Data