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Bayes’ Net Representation

 A directed, acyclic graph, one node per random variable

 A conditional probability table (CPT) for each node

 A collection of distributions over X, one for each combination 
of parents’ values

 Bayes’ nets implicitly encode joint distributions

 As a product of local conditional distributions

 To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:



Variable Elimination

 Interleave joining and marginalizing

 dk entries computed for a factor over k 
variables with domain sizes d

 Ordering of elimination of hidden variables 
can affect size of factors generated

 Worst case: running time exponential in the 
size of the Bayes’ net

…

…



Approximate Inference: Sampling



Sampling

 Sampling is a lot like repeated simulation

 Predicting the weather, basketball games, …

 Basic idea

 Draw N samples from a sampling distribution S

 Compute an approximate posterior probability

 Show this converges to the true probability P

 Why sample?

 Learning: get samples from a distribution 
you don’t know

 Inference: getting a sample is faster than 
computing the right answer (e.g. with 
variable elimination)



Sampling

 Sampling from given distribution

 Step 1: Get sample u from uniform 
distribution over [0, 1)
 E.g. random() in python

 Step 2: Convert this sample u into an 
outcome for the given distribution by 
having each target outcome 
associated with a sub-interval of [0,1) 
with sub-interval size equal to 
probability of the outcome

 Example

 If random() returns u = 0.83, 
then our sample is C = blue

 E.g, after sampling 8 times:

C P(C)

red 0.6

green 0.1

blue 0.3



Sampling in Bayes’ Nets

 Prior Sampling

 Rejection Sampling

 Likelihood Weighting

 Gibbs Sampling



Prior Sampling



Prior Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

+c 0.5
-c 0.5

+c +s 0.1

-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8

-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90

-w 0.10

-r +w 0.01

-w 0.99

Samples:

+c, -s, +r, +w

-c, +s, -r, +w

…



Prior Sampling

 For i = 1, 2, …, n

 Sample xi from P(Xi | Parents(Xi))

 Return (x1, x2, …, xn)



Prior Sampling

 This process generates samples with probability:

…i.e. the BN’s joint probability

 Let the number of samples of an event be

 Then

 I.e., the sampling procedure is consistent



Example

 We’ll get a bunch of samples from the BN:
+c, -s, +r, +w

+c, +s, +r, +w

-c, +s, +r,  -w

+c, -s, +r, +w

-c,  -s,  -r, +w

 If we want to know P(W)
 We have counts <+w:4, -w:1>

 Normalize to get P(W) = <+w:0.8, -w:0.2>

 This will get closer to the true distribution with more samples

 Can estimate anything else, too

 What about P(C | +w)?   P(C | +r, +w)?  P(C | -r, -w)?

 Fast: can use fewer samples if less time (what’s the drawback?)

S R

W

C



Rejection Sampling



+c, -s, +r, +w
+c, +s, +r, +w
-c, +s, +r,  -w
+c, -s, +r, +w
-c,  -s,  -r, +w

Rejection Sampling

 Let’s say we want P(C)

 No point keeping all samples around

 Just tally counts of C as we go

 Let’s say we want P(C | +s)

 Same thing: tally C outcomes, but 
ignore (reject) samples which don’t 
have S=+s

 This is called rejection sampling

 It is also consistent for conditional 
probabilities (i.e., correct in the limit)

S R

W

C



Rejection Sampling

 Input: evidence instantiation

 For i = 1, 2, …, n

 Sample xi from P(Xi | Parents(Xi))

 If xi not consistent with evidence

 Reject: return – no sample is generated in this cycle

 Return (x1, x2, …, xn)



Likelihood Weighting



 Idea: fix evidence variables and sample the 
rest
 Problem: sample distribution not consistent!

 Solution: weight by probability of evidence 
given parents

Likelihood Weighting

 Problem with rejection sampling:
 If evidence is unlikely, rejects lots of samples

 Evidence not exploited as you sample

 Consider P( Shape | blue )

Shape ColorShape Color

pyramid,  green
pyramid,  red
sphere,     blue
cube,         red
sphere,      green

pyramid,  blue
pyramid,  blue
sphere,     blue
cube,         blue
sphere,      blue



Likelihood Weighting

+c 0.5
-c 0.5

+c +s 0.1
-s 0.9

-c +s 0.5

-s 0.5

+c +r 0.8
-r 0.2

-c +r 0.2

-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99

Samples:

+c, +s, +r, +w

…
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Likelihood Weighting

 Input: evidence instantiation

 w = 1.0

 for i = 1, 2, …, n

 if Xi is an evidence variable

 Xi = observation xi for Xi

 Set w = w * P(xi | Parents(Xi))

 else

 Sample xi from P(Xi | Parents(Xi))

 return (x1, x2, …, xn), w



Likelihood Weighting

 Sampling distribution if z sampled and e fixed evidence

 Now, samples have weights

 Together, weighted sampling distribution is consistent

Cloudy

R

C

S

W



Likelihood Weighting

 Likelihood weighting is good

 We have taken evidence into account as we 
generate the sample

 E.g. here, W’s value will get picked based on the 
evidence values of S, R

 More of our samples will reflect the state of the 
world suggested by the evidence

 Likelihood weighting doesn’t solve all our 
problems

 Evidence influences the choice of downstream 
variables, but not upstream ones (C isn’t more 
likely to get a value matching the evidence)

 We would like to consider evidence when we 
sample every variable (leads to Gibbs sampling)

S R

W

C



Gibbs Sampling



Gibbs Sampling

 Procedure: keep track of a full instantiation x1, x2, …, xn.   Start with an 
arbitrary instantiation consistent with the evidence.  Sample one variable 
at a time, conditioned on all the rest, but keep evidence fixed.  Keep 
repeating this for a long time.

 Property: in the limit of repeating this infinitely many times the resulting 
samples come from the correct distribution (i.e. conditioned on evidence).

 Rationale: both upstream and downstream variables condition on 
evidence.

 In contrast: likelihood weighting only conditions on upstream evidence, 
and hence weights obtained in likelihood weighting can sometimes be 
very small.  Sum of weights over all samples is indicative of how many 
“effective” samples were obtained, so we want high weight.



 Step 2: Initialize other variables 
 Randomly

Gibbs Sampling Example: P( S | +r)

 Step 1: Fix evidence
 R = +r

 Steps 3: Repeat
 Choose a non-evidence variable X

 Resample X from P( X | all other variables)
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Efficient Resampling of One Variable

 Sample from P(S | +c, +r, -w)

 Many things cancel out – only CPTs with S remain!

 More generally: only CPTs that have resampled variable need to be considered, and 
joined together

S +r

W

C



Bayes’ Net Sampling Summary

 Prior Sampling  P( Q )

 Likelihood Weighting  P( Q | e)

 Rejection Sampling  P( Q | e )

 Gibbs Sampling  P( Q | e )



Further Reading on Gibbs Sampling*

 Gibbs sampling produces sample from the query distribution P( Q | e ) 
in limit of re-sampling infinitely often

 Gibbs sampling is a special case of more general methods called 
Markov chain Monte Carlo (MCMC) methods 

 Metropolis-Hastings is one of the more famous MCMC methods (in fact, Gibbs 
sampling is a special case of Metropolis-Hastings) 

 You may read about Monte Carlo methods – they’re just sampling


