CS 188: Artificial Intelligence
Filtering and Applications

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS$88 materials are available at http://ai.berkeley.edu.]



Today’s Topics

Recap of Hidden Markov Models (HMMs) and exact inference
Approximate Inference in HMMs via Particle Filtering
Applications in Robot Localization and Mapping

Brief overview of Dynamic Bayes Nets



[Demo: Ghostbusters Markov Model (L15D1)]
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HMM Inference: Find State Given Evidence

= We are given evidence at each time and want to know

B:(X) = P(X¢|eq.t)

* |dea: start with P(X;) and derive B¢(X) in terms of B;_1(X)

= Two steps: Passage of Time & Observation
B'4(X) = P(X4le1.3)

B3(X)  By(X) = P(X4le1.q)



Passage of Time

= Assume we have current belief P(X | evidence to date) and transition prob.

B(Xt) — P(Xt‘elit) P(Xt_|_1|£Ut) B(X3) ?

* Then, after one time step passes: @ @ @

P(Xt—l—l‘elzt) = ZP(Xt-Haxt‘el:t)
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= ZP(XtH’UUtael:t)P(ZCt!fEu) = Or compactly:
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Example: Passage of Time

= As time passes, uncertainty “accumulates” (Transition model: ghosts usually go counter-clockwise)
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Observation

= Assume we have current belief P(X | previous evidence) and evidence model:
?

B'(Xi41) = P(Xiq1lerr)  Ples+1]|Xey1) . W
* Then, after evidence comes in: ° e e 0
P(Xiyalerir1) = P(Xiy1, eryalers)/Plecyalert) é é é
XXi41 P(Xt+17€t+1\€1:t)
= P(eiy1le1:4, Xev1)P(Xiq1ler:)
= P(et11|Xt41)P(Xis1lert)

= Or, compactly:

= Basicidea: beliefs “reweighted”
by likelihood of evidence
B(Xi41) o<x,y, Plett1]X41)B (Xit1) = Unlike passage of time, we have
to renormalize



Example: Observation

= As we get observations, beliefs get reweighted, uncertainty “decreases’

Before observation After observation

B(X) «x P(e|X)B'(X)




Online Belief Updates

Every time step, we start with current P(X | evidence)

We update for time:

P(xileri—1) = Y P(zy_1ler:t—1) - P(we|wi—1) @_»@

Lt—1

We update for evidence: @

P(x¢ler+) xx P(xiler+—1) - Plet|xt)

This is our updated belief Bi(X) = P(X¢|e1:+)
The forward algorithm does both at once (and doesn’t normalize)



The Forward Algorithm

= We are given evidence at each time and want to know

Bi(X) = P(X¢le1:t)

= We can derive the following updates

We can normalize as we go if we
want to have P(x|e) at each time

P(xtlel t) OCXtP(ajb €1:t)  ‘ step, or just once at the end...

= > P(z4_1,2t,€1:¢)

Lt—1

= Y P(zy_1,e1:4-1)P(zt|zi—1)P(et]xt)
Ti—1

= P(et|zt) > P(at|lewi—1)P(xi—1,€1:4-1)

Lt—1

[Demo: Ghostbusters Exact Filtering (L15D2)]



Example: Weather HMM [ ( [/ (
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Example: Weather HMM [ ( [/ (

Passage of Time:

B'(Xi41) = ZP(Xt+1|$t)B($t>

Tt

B’(+r) =0.5*0.7 + 0.5%0.3 =0.5
B’(-r) =0.5*0.3 +0.5%0.7=0.5
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Example: Weather HMM [ ( [/ (
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Example: Weather HMM [ ( [/’(
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Example: Weather HMM [ ( [/7’(
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Video of Ghostbusters Filtering




How can we support large state spaces?



Particle Filtering




Particle Filtering

Filtering: approximate solution

Sometimes |X]| is too big to use exact inference
= |X| may be too big to even store B(X)
= E.g. Xis continuous

Solution: approximate inference

= Track samples of X, not all values

= Samples are called particles

= Time per step is linear in the number of samples
But: number needed may be large
= |n memory: list of particles, not states

This is how robot localization works in practice

Particle is just new name for sample
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0.0 | 0.0 | 0.2

0.0 | 02 | 05
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Representation: Particles

1 2
= Qur representation of P(X) is now a list of N particles (samples) , ~
O
= Generally, N << | X]|
= Storing map from X to counts would defeat the point 2| @
= Example: if we want to infer location on 16x16 grid 1
Store 256 numbers: Store 10 numbers:
Particles:
Particles: (3,3)
(3,3) (2,3)
(2,3) (3,3)
VS 53 (3,2)
(3,2) (1,2)
(3,3) (3,3)
(2,3)




Representation: Particles

= Qur representation of P(X) is now a list of N particles (samples)
= Generally, N << | X]|
= Storing map from X to counts would defeat the point

= P(x) approximated by number of particles with value x
= So, many x may have P(x) = 0!
= More particles, more accuracy

" For now, all particles have a weight of 1

Particles:
(3,3)




Particle Filtering: Passage of Time

= Each particle is moved by sampling its next
position from the transition model

v’ = sample(P(X'|z))

Particles:
(3,3)

Particles:
(3,2)
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Particle Filtering: Passage of Time

Each particle is moved by sampling its next
position from the transition model

v’ = sample(P(X'|z))

For example: ‘

X | P(X’'|X=(3,3))
samplef (3,2) 0.8 )
(3,3) 0.1
(2,3) 0.1

most likely returns (3,2) but may return (3,3) or (2,3)

Particles:

(3,3)

Particles:

(3,2)

(2,

(3,2)
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)
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Particle Filtering: Passage of Time

= Each particle is moved by sampling its next
position from the transition model

v’ = sample(P(X'|z))

= This is like prior sampling — samples’ frequencies
reflect the transition probabilities

= Here, most samples move clockwise, but some move in
another direction or stay in place

* This captures the passage of time

= |f enough samples, close to exact values before and
after (consistent)

Particles:
(3,3)

Particles:
(3,2)
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Particle Filtering: Observe

= Slightly trickier:

Don’t sample observation, fix it

Similar to likelihood weighting, downweight
samples based on the evidence

w(x) = P(e|x)
B(X) < P(e|X)B'(X)
As before, the probabilities don’t sum to one,

since all have been down-weighted (in fact they
now sum to (N times) an approximation of P(e))

Particles:

-
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Particle Filtering: Resample

= Rather than tracking weighted samples, we
resample

= N times, we choose from our weighted sample
distribution (i.e. draw with replacement)

* This is equivalent to renormalizing the
distribution

= Now the update is complete for this time step,
continue with the next one

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)




Recap: Particle Filtering

Weight

= Particles: track samples of states rather than an explicit distribution

Elapse
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Particles: Particles:
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(2,3) (2,3)
(3,3) (3,2)
(3,2) (3,1)
(3,3) (3,3)
(3,2) (3,2)
(1,2) (1,3)
(3,3) (2,3)
(3,3) (3,2)
(2,3) (2,2)
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Particles:

(New) Particles:
(3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5)]



Video of Demo — Moderate Number of Particles




Video of Demo — One Particle




Video of Demo — Huge Number of Particles




More Demos!
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Robot Localization

" |n robot localization:

= We know the map, but not the robot’s position

= QObservations may be vectors of range finder readings

DIRECTORY
= State space and readings are typically continuous (works

basically like a very fine grid) and so we cannot store B(X)

= Particle filtering is a main technique




Particle Filter Localization (Sonar)

Global localization with
© SONAr SENSOrs '




Particle Filter Localization (Laser)

[Video: global-floor.gif]



Robot Mapping

= SLAM: Simultaneous Localization And Mapping
= We do not know the map or our location
= State consists of position AND map!

= Main techniques: Kalman filtering (Gaussian HMM:s) ~—— *4
and particle methods | |
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DP-SLAM, Ron Parr
[Demo: PARTICLES-SLAM-mappingl-new.avi]



Particle Filter SLAM — Video 1

[Demo: PARTICLES-SLAM-mappingl-new.avi]



Particle Filter SLAM — Video 2

[Demo: PARTICLES-SLAM-fastslam.avi]



Dynamic Bayes Nets




Dynamic Bayes Nets (DBNs)

= We want to track multiple variables over time, using
multiple sources of evidence

" |dea: Repeat a fixed Bayes net structure at each time

= Variables from time t can condition on those from t-1

t=1 t=2 t=3

= Dynamic Bayes nets are a generalization of HMMs
[Demo: pacman sonar ghost DBN model (L15D6)]



Pacman — Sonar

-
*74 CS188 Pacman

14.0

21.0 26.0

[Demo: Pacman — Sonar — No Beliefs(L14D1)]



Video of Demo Pacman Sonar Ghost DBN Model




Conclusion

= We're done with Part |I: Uncertainty!

= \We've seen methods for:

= Representing uncertainty structure via Bayes Nets and multiple
ways of doing inference

" |ncorporating decision-making with uncertainty via Decision Nets

= Exploiting special structure of sequences / time via Markov Models
and Hidden Markov Models and exact and approximate inference
(Particle Filtering)

= Next up: Part lll: Machine Learning!



