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Today’s Topics

§ Recap of Hidden Markov Models (HMMs) and exact inference

§ Approximate Inference in HMMs via Particle Filtering

§ Applications in Robot Localization and Mapping

§ Brief overview of Dynamic Bayes Nets 



Recap: Reasoning Over Time

§ Markov models

§ Hidden Markov models
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X5X2
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X E P
rain umbrella 0.9
rain no umbrella 0.1
sun umbrella 0.2
sun no umbrella 0.8

[Demo: Ghostbusters Markov Model (L15D1)]
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HMM Inference: Find State Given Evidence

§ We are given evidence at each time and want to know

§ Idea: start with 𝑃(𝑋1)	and derive 𝐵!(𝑋) in terms of 𝐵!"#(𝑋)
§ Two steps: Passage of Time & Observation
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𝐵"# 𝑋 = 𝑃(𝑋#|𝑒$:!)

𝐵# 𝑋 = 𝑃(𝑋#|𝑒$:#)

𝐵! 𝑋 = 𝑃(𝑋!|𝑒":!)



Passage of Time

§ Assume we have current belief P(X | evidence to date) and transition prob.

§ Then, after one time step passes:
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§ Or compactly:
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Ex: 𝐵(𝑋!) ?



Example: Passage of Time

§ As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 4

(Transition model: ghosts usually go counter-clockwise)



Observation
§ Assume we have current belief P(X | previous evidence) and evidence model:

§ Then, after evidence comes in:

§ Or, compactly:

B0(Xt+1) = P (Xt+1|e1:t)

P (Xt+1|e1:t+1) = P (Xt+1, et+1|e1:t)/P (et+1|e1:t)
/Xt+1 P (Xt+1, et+1|e1:t)

= P (et+1|Xt+1)P (Xt+1|e1:t)

= P (et+1|e1:t, Xt+1)P (Xt+1|e1:t)

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)

§ Basic idea: beliefs “reweighted” 
by likelihood of evidence

§ Unlike passage of time, we have 
to renormalize

= P (et+1|Xt+1)P (Xt+1|e1:t)
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Example: Observation

§ As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation



Online Belief Updates

§ Every time step, we start with current P(X | evidence)
§ We update for time:

§ We update for evidence:

§ This is our updated belief
§ The forward algorithm does both at once (and doesn’t normalize)

X2X1

X2

E2



The Forward Algorithm
§ We are given evidence at each time and want to know

§ We can derive the following updates
We can normalize as we go if we 
want to have P(x|e) at each time 

step, or just once at the end…

[Demo: Ghostbusters Exact Filtering (L15D2)]
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Example: Weather HMM
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Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5*0.7 + 0.5*0.3 = 0.5
B’(-r)  = 0.5*0.3 + 0.5*0.7 = 0.5

Passage of Time:

Observation:
B(Xt+1) /Xt+1 P (et+1|Xt+1)B

0(Xt+1)

B0(Xt+1) =
X

xt

P (X 0|xt)B(xt)=
X

xt

P (Xt+1|xt)P (xt|e1:t)B0(Xt+1) =
X

xt

P (X 0|xt)B(xt)
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Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = ?
B(-r)  = ?

Passage of Time:

Observation:
B(Xt+1) /Xt+1 P (et+1|Xt+1)B

0(Xt+1)

B0(Xt+1) =
X

xt

P (X 0|xt)B(xt)=
X

xt

P (Xt+1|xt)P (xt|e1:t)B0(Xt+1) =
X

xt

P (X 0|xt)B(xt)
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Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = 0.9*0.5 = 0.45
B(-r)  = 0.2*0.5 = 0.10

Passage of Time:

Observation:
B(Xt+1) /Xt+1 P (et+1|Xt+1)B

0(Xt+1)

B0(Xt+1) =
X

xt

P (X 0|xt)B(xt)=
X

xt

P (Xt+1|xt)P (xt|e1:t)B0(Xt+1) =
X

xt

P (X 0|xt)B(xt)

0.818
0.182

normalize
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Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = 0.818
B(-r)  = 0.182

B’(+r) = 0.627
B’(-r)  = 0.373

B(+r) = 0.883
B(-r)  = 0.117

Passage of Time:

Observation:
B(Xt+1) /Xt+1 P (et+1|Xt+1)B

0(Xt+1)

B0(Xt+1) =
X

xt

P (X 0|xt)B(xt)=
X

xt

P (Xt+1|xt)P (xt|e1:t)B0(Xt+1) =
X

xt

P (X 0|xt)B(xt)
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Video of Ghostbusters Filtering



How can we support large state spaces?



Particle Filtering



Particle Filtering

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

§ Filtering: approximate solution

§ Sometimes |X| is too big to use exact inference
§ |X| may be too big to even store B(X)
§ E.g. X is continuous

§ Solution: approximate inference
§ Track samples of X, not all values
§ Samples are called particles
§ Time per step is linear in the number of samples
§ But: number needed may be large
§ In memory: list of particles, not states

§ This is how robot localization works in practice

§ Particle is just new name for sample



Representation: Particles

§ Our representation of P(X) is now a list of N particles (samples)
§ Generally, N << |X|
§ Storing map from X to counts would defeat the point
§ Example: if we want to infer location on 16x16 grid

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Store 256 numbers: Store 10 numbers:

VS

1 2 3

3

2

1

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)



Representation: Particles

§ Our representation of P(X) is now a list of N particles (samples)
§ Generally, N << |X|
§ Storing map from X to counts would defeat the point

§ P(x) approximated by number of particles with value x
§ So, many x may have P(x) = 0! 
§ More particles, more accuracy

§ For now, all particles have a weight of 1

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

1 2 3

3

2

1
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Particle Filtering: Passage of Time

§ Each particle is moved by sampling its next 
position from the transition model

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)

1 2 3

3

2

1



1 2 3
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Particle Filtering: Passage of Time

§ Each particle is moved by sampling its next 
position from the transition model

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)

1 2 3

3

2

1

X’ P(X’|X=(3,3))

(3,2) 0.8

(3,3) 0.1

(2,3) 0.1

sample(                                   )

most likely returns (3,2) but may return (3,3) or (2,3)

For example:
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Particle Filtering: Passage of Time

§ Each particle is moved by sampling its next 
position from the transition model

§ This is like prior sampling – samples’ frequencies 
reflect the transition probabilities

§ Here, most samples move clockwise, but some move in 
another direction or stay in place

§ This captures the passage of time
§ If enough samples, close to exact values before and 

after (consistent)

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)

1 2 3

3

2

1



§ Slightly trickier:

§ Don’t sample observation, fix it

§ Similar to likelihood weighting, downweight 
samples based on the evidence

§ As before, the probabilities don’t sum to one, 
since all have been down-weighted (in fact they 
now sum to (N times) an approximation of P(e))

Particle Filtering: Observe

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)



Particle Filtering: Resample

§ Rather than tracking weighted samples, we 
resample

§ N times, we choose from our weighted sample 
distribution (i.e. draw with replacement)

§ This is equivalent to renormalizing the 
distribution

§ Now the update is complete for this time step, 
continue with the next one

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

(New) Particles:
    (3,2)
    (2,2)
    (3,2)   
    (2,3)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (3,2)

1 2 3

3

2

1

1 2 3

3

2

1



Recap: Particle Filtering
§ Particles: track samples of states rather than an explicit distribution

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Elapse Weight Resample

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

(New) Particles:
    (3,2)
    (2,2)
    (3,2)   
    (2,3)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5)]

1 2 3

3

2

1



Video of Demo – Moderate Number of Particles



Video of Demo – One Particle



Video of Demo – Huge Number of Particles



More Demos!



Robot Localization

§ In robot localization:
§ We know the map, but not the robot’s position
§ Observations may be vectors of range finder readings
§ State space and readings are typically continuous (works 

basically like a very fine grid) and so we cannot store B(X)
§ Particle filtering is a main technique



Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi]



Particle Filter Localization (Laser)

[Video: global-floor.gif]



Robot Mapping

§ SLAM: Simultaneous Localization And Mapping
§ We do not know the map or our location
§ State consists of position AND map!
§ Main techniques: Kalman filtering (Gaussian HMMs) 

and particle methods

DP-SLAM, Ron Parr
[Demo: PARTICLES-SLAM-mapping1-new.avi]



Particle Filter SLAM – Video 1

[Demo: PARTICLES-SLAM-mapping1-new.avi]



Particle Filter SLAM – Video 2

[Demo: PARTICLES-SLAM-fastslam.avi]



Dynamic Bayes Nets



Dynamic Bayes Nets (DBNs)
§ We want to track multiple variables over time, using 

multiple sources of evidence

§ Idea: Repeat a fixed Bayes net structure at each time

§ Variables from time t can condition on those from t-1

§ Dynamic Bayes nets are a generalization of HMMs

G1
a

E1a E1b

G1
b

G2
a

E2a E2b

G2
b

t =1 t =2

G3
a

E3a E3b

G3
b

t =3

[Demo: pacman sonar ghost DBN model (L15D6)]



Pacman – Sonar

[Demo: Pacman – Sonar – No Beliefs(L14D1)]



Video of Demo Pacman Sonar Ghost DBN Model



Conclusion

§ We’re done with Part II: Uncertainty!

§ We’ve seen methods for:
§ Representing uncertainty structure via Bayes Nets and multiple 

ways of doing inference
§ Incorporating decision-making with uncertainty via Decision Nets
§ Exploiting special structure of sequences / time via Markov Models 

and Hidden Markov Models and exact and approximate inference 
(Particle Filtering)

§ Next up: Part III: Machine Learning!


