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Machine Learning

= Up until now: how use a model to make optimal decisions

= Machine learning: how to acquire a model from data / experience

= |Learning parameters (e.g. probabilities)
= |earning structure (e.g. BN graphs)
= |earning features or hidden concepts (e.g. neural nets, clustering)

= What’s our roadmap?



Our Machine Learning Roadmap

= Define the problem

= Type of problem, domain (i.e. spam filtering, digit recognition)

= |ook at several learning approaches / models

= Naive Bayes (today), Perceptrons, Logistic Regression, Neural Networks (next week)

* How to find model parameters: Maximum Likelihood

= Special cases: solve analytically (today)
" |n general: numerical optimization (next week)

" Themes throughout

= Working with data
= Preventing overfitting
= Evaluating performance



Multiple Types of Learning Problems

= Supervised learning: correct answers for each training example
= Classification: learning predictor with discrete outputs

= Regression: learning predictor with real-valued outputs

" Reinforcement learning: reward function, no correct answers

* Unsupervised learning: no correct answers, just find good
representations / features of the data



Classification




Classification and Machine Learning

= Dataset: each data point, x, is associated with some label (aka class), y
= Goal of classification: given inputs x, write an algorithm to predict labels y
= Workflow of classification process:

Input is provided to you

Extract features from the input: attributes of the input that characterize each x and hopefully
help with classification

Run some machine learning algorithm on the features: today, Naive Bayes
Output a predicted label y

Feature Machine
_ ] extraction Features ] learning y
x (input) J

(attributes of x)J (predicted output)




Training and Machine Learning

" Bigidea: ML algorithms learn patterns between features and labels from data
®" You don’t have to reason about the data yourself
= You're given training data: lots of example datapoints and their actual labels

Pract{ce
Exam

Training: Learn patterns from labeled data, and Eventually, use your algorithm to
periodically test how well you're doing predict labels for unlabeled data



Example: Spam Filter

Input: an email
Output: spam/ham

Setup:

= Get alarge collection of example emails, each labeled
“spam” or “ham”

= Note: someone has to hand label all this data!
= Want to learn to predict labels of new, future emails

Features: The attributes used to make the ham /
spam decision

Words: FREE!

Text Patterns: Sdd, CAPS

Non-text: SenderinContacts, WidelyBroadcast

X

X

\

Dear Sir.

First, | must solicit your confidence in
this transaction, this is by virture of its
nature as being utterly confidencial and
top secret. ...

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, lknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, | know it was
working pre being stuck in the corner,
but when | plugged it in, hit the power
nothing happened.




Example: Digit Recognition

Input: images / pixel grids
Output: a digit 0-9

Setup:
= Get alarge collection of example images, each labeled with a digit
= Note: someone has to hand label all this data!
= Want to learn to predict labels of new, future digit images

Features: The attributes used to make the digit decision
= Pixels: (6,8)=ON
= Shape Patterns: NumComponents, AspectRatio, NumLoops

?7?



Other Classification Tasks

= (Classification: given inputs x, predict labels (classes) y

= Examples:
= QObject recognition
= |nput: images; classes: object type

= Medical diagnosis
input: symptoms; classes: diseases

= Automatic essay grading
input: document; classes: grades

* Fraud detection
input: account activity; classes: fraud / no fraud

= Customer service email routing
= ...Mmany more

= (lassification is an important commercial technology!

L JL)
“ 1'15;‘
Tdentify the Object:
A) Deog
B) Car
C) Box
P) Alligator

| 2




Model-Based Classification




Model-Based Classification

®* Model-based approach

* Build a model (e.g. Bayes’ net) where
both the label and features are
random variables

" |nstantiate any observed features

= Query for the distribution of the label
conditioned on the features

= Challenges
= What structure should the BN have?
= How should we learn its parameters?




Naive Bayes Model

= Naive Bayes: Assume all features are independent effects of the label

= Random variables in this Bayes’ net: “
= Y =The label
= F,F, .. F,=The n features

= Probability tables in this Bayes’ net: a G G
= P(Y) =Probability of each label, given no information about the features.

= Sometimes called the prior.

= P(F,|Y) =One table per feature. Probability of feature, given the label.



Naive Bayes for Digits

= Simple digit recognition version:
= One feature (variable) F; for each grid position <i,j> “
= Feature values are on / off, based on whether intensity

is more or less than 0.5 in underlying image

= Each input maps to a feature vector, e.g.

1 _><FO,O:OFO,1:OFO,2:1 FO,3:1 F0,4:OF15,15:O> ...

= Here: lots of features, each is binary valued

* What are the parameters of this model?



Naive Bayes for Digits: Parameters

P(Y) P(F31 =on|Y) P(Fs55=onlY)
1 101 / 1| 0.01 v 1 0.05
2 0.1 2 10.05 2 10.01
3 101 3 |0.05 3 10.90
4 0.1 . / 4 10.30 4 10.80
5 101 % 5 | 0.80 5 | 0.90
6 101 6 | 0.90 6 | 0.90
7 101 7 |0.05 7 |10.25
8 101 8 | 0.60 8 | 0.85
9 101 9 | 0.50 9 | 0.60
0 101 0 | 0.80 0 | 0.80




Naive Bayes for Text

. £ . )
Bag of-words Naive Bayes. how many features are there? “

= Features: W, is the word at positon i how many values?
= As before: predict label conditioned on feature variables (spam vs. ham)
= As before: assume features are conditionally independent given label

= New: each W, is identically distributed, so P(W,|Y) = P(W,|Y) = ... @ @ o @

= “Tied” distributions and bag-of-words
= Usually, each variable gets its own conditional probability distribution P(F|Y)
" |n a bag-of-words model
= Each position is identically distributed

= All positions share the same conditional probs P(W]Y)
= Why make this assumption?

= Called “bag-of-words” because model is insensitive to word order or reordering

free our offer try please

please try our free offer




Naive Bayes for Text: Parameters

= What are the parameters?

P(Y)
ham : 0.66
spam: 0.33

P(Wspam)
the : 0.0156
to 0.0153
and : 0.0115
of 0.0095
you : 0.0093
a : 0.0086
with: 0.0080
from: 0.0075

P(W|ham)
the : 0.0210
to 0.0133
of : 0.0119
2002: 0.0110
with: 0.0108
from: 0.0107
and : 0.0105
a 0.0100




Naive Bayes Model

" |n general, the joint probability in Naive Bayes model is: “

|Y| parameters

P(Y,F1...Fp) = P(Y)HP(FZ-\Y) G G G

Y] x |F|" values nx |F| x |Y]

parameters

= We only have to specify how each feature depends on the class
" Total number of parameters is linear in n
= Modelis very simplistic, but often works anyway



Inference for Naive Bayes

" Goal: compute posterior distribution over label variable Y
= Step 1: get joint probability of label and evidence for each label

[ P(y1,f1---fn) |
PY, f1...fn) = P(y2>]:1 ... fn)
| P(yg, f1-- - fn)

= Step 2: sum to get probability of evidence

= Step 3: normalize by dividing Step 1 by Step 2

=)

- P(y1) I1; P(fily1) |
P(y2) Hi_P(fi\yz)

- P(yg) Hz'.P(fiwk) |

P(flfn)

1N

P(Y|f1---fn)



= Model: P, Wi1...Wy)=PX)][PW;]Y)

"= Parameters:

Example: Spam Filtering

P(Y)
ham : 0.66
spam: 0.33

P(Wspam)
the : 0.0156
to 0.0153
and : 0.0115
of 0.0095
you : 0.0093
a : 0.0086
with: 0.0080
from: 0.0075

P(W|ham)
the : 0.0210
to 0.0133
of : 0.0119
2002: 0.0110
with: 0.0108
from: 0.0107
and : 0.0105
a 0.0100




P
P

PY

==

)

Example: Spam Filtering

Word

P(w|spam)

P(w|ham)

Tot Spam

Tot Ham

(prior)

0.33333

0.66666

-1.1

-0.4




General Naive Bayes

= What do we need in order to use Naive Bayes?

" Inference method (we just saw this part)
= Start with a bunch of probabilities: P(Y) and the P(F,|Y) tables
= Use standard inference to compute P(Y|F,...F,)
= Nothing new here

" Estimates of local conditional probability tables
= P(Y), the prior over labels
= P(F;]Y) for each feature (evidence variable)

" These probabilities are collectively called the parameters of
the model and denoted by &

= Up until now, we assumed these appeared by magic, but they
typically come from training data counts



Parameter Estimation




Parameter Estimation

" Estimating the distribution of a random variable

» Flicitation: ask a human (why is this hard?)

" Empirically: use training data (learning!)
= Example: The parameter O is the true fraction of red beans in the jar.

You don’t know 0 but would like to estimate it.
= Collecting training data: You randomly pull out 3 beans:

= Estimating O using counts, you guess 2/3 of beans in the jar are red.

= Can we mathematically show that using counts is the “right” way to
estimate 67



Parameter Estimation with Maximum Likelihood

= QOisthe true fraction of red beans in the jar (i.e. P(red | 6) = 8)
= Can we mathematically show that using counts is the “right” way to estimate 67

= Maximum likelihood estimation: Choose the 0 value that maximizes the probability
of the observation

" |n other words, choose the 6 value that maximizes P(observation | 8)
= For our problem:

P(observation | 6)
= P(randomly selected 2 red and 1 blue | © of beans are red)
=P(red | ©) * P(red | 8) * P(blue | 6)
=02 (1-96)
= We want to compute:

argmax 62 (1 - 0)
0



Parameter Estimation with Maximum Likelihood

= We want to compute:

argmax 62 (1- 8) - T T
0 )

A\

10

02 (1-8). p \ In (62 (1-9)

= Set derivative to 0, and solve!

= Common issue: The likelihood (expression we’re maxing) is the product of a lot of probabilities.
This can lead to complicated derivatives.

= Solution: Maximize the log-likelihood instead. Useful fact:

argmax f(6) = argmax In f(8)
0 0



Parameter Estimation with Maximum Likelihood

argmax 0%(1 — 6) Find O that maximizes likelihood
0
= argmaxIn ((92(1 —0))

p Find 6 that maximizes log-likelihood (will be the same 6)

1 ‘ .
(;_H In(6*(1—6)) =0 Set derivative to 0
% [In(6%) +In(1 — )] =0 Logarithm rule: products become sums
a

(;—0 2In(f) +In(1 —6)] =0 Logarithm rule: exponentiation becomes multiplication

) 1 . . ..
%2111(9) + % In(l—60)=0 Now we can derive each term of the original product separately
a a

5 1

5 —T—5 " 0 Reminder: Derivative of In(0) is 1/0
0

IR N )

Use algebra to solve for 6. If we used arbitrary red and blue
counts r and b instead of r=2 and b=1, we’d get 6 =r/ (r+b), the
count estimate.



Parameter Estimation with Maximum Likelihood (General Case)

x| ] blue

P(X|10) 6 1-86

= Model:

= Data: draw N balls, N, come up red and N, come up blue
= Dataset D = {xq, ..., x5} of N ball draws

P(D|6) = HP(xiw) — gNr . (1 — §)Nb

= Maximum Likelihood Estimation: find 8 that maximizes P(D|6):

6 = argmax P(D|6) = argmaxlog P(D|6) « N, log(8) + N, log(1 — )
0 0

Take derivative and set to O:

010gP(D|9)=NT_ Ny, — 0o L5 N, #ofredballs

00 0 1—6 N, + N, ~ total # of balls




Parameter Estimation with Maximum Likelihood (General Case)

= Maximum Likelihood Estimation: find 8 that maximizes P(D|6):
6 = argmax P(D|6) = argmax log P(D|0) '« N, log(6) + N, log(1 — 6)
0 0

Take derivative and set to O:

log P(D|6) = [N log(8) + Ny log(1 — )]

= Nrﬁ [log(e>] + Ny == [log(1 — 6)]

— NT(]- — 0) — NbH

= N, — (N, +Np) = 0

Ny

50 =




Parameter Estimation with Maximum Likelihood

= Collectively name all model parameters (i.e. probability tables) as 6

= Maximum Likelihood Estimation: find 8 that maximizes P(Data|6)
" |n practice, maximize log P instead because computation is easier

= To solve, either take derivative and set to 0, or use numerical optimization
(next lectures)

" For Naive Bayes maximum likelihood estimates of prob. tables are:

# of occurences of class y # of occurences of feature f and class y

P(fly) =

P(y) =

total # of observations total # of occurences of class y

" Need to be careful though ... let’s see what can go wrong..



What is the best way to fit this data?

K Degree 15 polynomial

15

10

-10

-15



Empirical Risk Minimization

= How should we evaluate the quality of our model?

= Empirical risk minimization
= Basic principle of machine learning
= We want the model (classifier, etc) that does best on the true test distribution
= Don’t know the true distribution so pick the best model on our actual training set
" Finding “the best” model on the training set is phrased as an optimization problem

= Main worry: overfitting to the training set

= Better with more training data (less sampling variance, training more like test)

= Better if we limit the complexity of our hypotheses (regularization and/or small
hypothesis spaces)

= Another worry: our training distribution doesn’t match true distribution



Underfitting and Overfitting




P(features, C = 2)
P(C=2)=0.1
P(on|C =2)=0.8
P(on|C =2) =0.1
P(off|C =2) =0.1

P(on|C =2) = 0.01

Example: Overfitting

2 wins!!

P(features,C = 3)

P(C=3)=0.1

P(on|C=3)=0.8
P(on|C =3)=0.9
P(off|C =3) =0.7

P(on|C =3) =0.0




Generalization and Overfitting

= Relative frequency parameters will overfit the training data!

= Just because we never saw a 3 with pixel (15,15) on during training doesn’t mean we won’t see it at
test time

= Unlikely that every occurrence of “minute” is 100% spam

= Unlikely that every occurrence of “seriously” is 100% ham

= What about all the words that don’t occur in the training set at all?
= |n general, we can’t go around giving unseen events zero probability

= As an extreme case, imagine using the entire email as the only feature

= Would get the training data perfect (if deterministic labeling)
= Wouldn’t generalize at all

= Just making the bag-of-words assumption gives us some generalization, but isn’t enough

" To generalize better: we need to smooth or regularize the estimates



Smoothing




Unseen Events




Laplace Smoothing

" Laplace’s estimate:

= Pretend you saw every outcome @ @ @
once more than you actually did

_ c(x)+1
PLaptt) = 1) + 1 Purr(X) =
_ c(z) + 1
N +|X] Prap(X) =

= Can derive this estimate with
Dirichlet priors (see cs281a)



Laplace Smoothing

" Laplace’s estimate (extended):

= Pretend you saw every outcome k extra times @ @ @

c(x) + k
P p—

LAPE(T) N + kIX

Prapo(X) =
= What's Laplace with k =07?

= kis the strength of the prior

Prap1(X) =
" Laplace for conditionals:

= Smooth each condition independently: Prap100(X) =

c(x,y) + k
c(y) + k| X|

Prapr(zly) =



Naive Bayes: No Smoothing (Overfitting)

= Relative probabilities (odds ratios):

P(W|ham) P(W|spam)
P(W|spam) P(W|ham)
south-west : inf screens : inf
nation : inf minute : inf
morally : inf guaranteed : inf
nicely : inf $205.00 : inf
extent : inf delivery : inf
seriously : inf signature : 1inf

What went wrong here?



Naive Bayes: With Smoothing

" For real classification problems, smoothing is critical

= New odds ratios:

P(W|ham) P(W|spam)
P(W|spam) P(W|ham)
helvetica : 11.4 verdana : 28.8
seems : 10.8 Credit : 28.4
group : 10.2 ORDER : 27.2
ago : 8.4 <FONT> : 26.9
areas : 8.3 money : 26.5

Do these make more sense?



What we did today

" Discussed various learning problems
= Supervised (classification or regression), reinforcement, unsupervised

= Saw our first machine learning algorithm: Naive Bayes
* Model is a Bayes Net where features are independent given class label
= Classification is just inference in Bayes Nets
" Learning is just counting feature occurrences in training data

" Saw Maximum Likelihood as a principled way to estimate
parameters

= Maximize probability of the data given model parameters
= For Naive Bayes, we solved maximization problem analytically

= Saw that fitting training data too well can cause issues (Overfitting)



Next: Perceptrons




Example: Naive Bayes for Spam Filter

= Step 1: Select a ML algorithm. We choose to model the problem with Naive Bayes.

= Step 2: Choose features to use.

Y: The label (spam or ham)

Y P(Y)
ham ?
spam ?
Fi: A feature F,: Another feature
(do I know the sender?) (# of occurrences of FREE)
Fi Y P(F,|Y) F, Y P(F,|Y)
yes ham ? 0 ham ?
no ham ? 1 ham ?
yes spam ? 2 ham ?
no spam ? 0 spam ?
1 spam ?
2 spam ?




Example: Naive Bayes for Spam Filter

= Step 3: Training: Use training data to fill in the probability tables.

Training Data

F,: # of occurrences of FREE

F, Y P(F,Y)
0 ham 0.5

1 ham 0.5

2 ham 0.0
0 spam 0.25
1 spam 0.50
2 spam 0.25

# | Email Text Label
1 | Attached is my portfolio. ham
2 | Are you free for a meeting tomorrow? ham
3 | Free unlimited credit cards!!!! spam
4 | Mail $10,000 check to this address spam
5 | Sign up now for 1 free Bitcoin spam
6 | Free money free money Spam

Row 4: P(F,=0 | Y=spam) = 0.25 because 1 out of 4 spam emails contains “free” 0 times.
Row 5: P(F,=1 | Y=spam) = 0.50 because 2 out of 4 spam emails contains “free” 1 time.
Row 6: P(F,=2 | Y=spam) = 0.25 because 1 out of 4 spam emails contains “free” 2 times.




Example: Naive Bayes for Spam Filter

" Model trained on a larger dataset:

Y: The label (spam or ham)

Y P(Y)

ham 0.6

Spam 0.4

Fi: A feature F,: Another feature
(do I know the sender?) (# of occurrences of FREE)
Fi Y P(F,|Y) F, Y P(F,|Y)

yes ham 0.7 0 ham 0.85
no ham 0.3 1 ham 0.07
yes spam 0.1 2 ham 0.08
no spam 0.9 0 spam 0.75
1 Spam 0.12
2 spam 0.13




Example: Naive Bayes for Spam Filter

Step 4: Classification

Suppose you want to label this email from a known sender: “
“Free food in Soda 430 today”

Step 4.1: Feature extraction:

= F, =vyes, known sender
= [, =1 occurrence of “free”
2



Example: Naive Bayes for Spam Filter

Step 4.2: Inference
Instantiate features (evidence):

" Fy=Yyes
u F2=1

Compute joint probabilities:

= P(Y=spam, F; =vyes, F, =1) = P(Y =spam) P(F; =vyes | spam) P(F, =1 | spam)

=0.4*0.1*0.12=0.0048
= P(Y=ham, F,=vyes, F,=1)=
=0.6 ¥0.7 *0.07 =0.0294

P(Y=ham) P(F; =yes | ham) P(F, =1 | ham)

Normalize:
= P(Y=spam | F; =yes, F, = 1) =0.0048 / (0.0048+0.0294) = 0.14
= P(Y=ham | F;=yes, F,=1)=0.0294 / (0.0048+0.0294) = 0.86
Classification result:
= 14% chance the email is spam. 86% chance it’s ham.

= QOr, if you don’t need probabilities, note that 0.0294 > 0.0048 and guess ham.

Y: The label (spam or ham)

Y P(Y)
ham 0.6
spam 0.4

F,: do | know the sender?

Fy Y P(F1]Y)
yes ham 0.7
no ham 0.3
yes spam 0.1
no spam 0.9

F,: # of occurrences of FREE

F, Y P(F,|Y)
0 ham 0.85
1 ham 0.07
2 ham 0.08
0 spam 0.75
1 spam 0.12
2 spam 0.13




