CS 188: Artificial Intelligence

Naive Bayes and Perceptrons

[These slides were created by Dan Klein, Pieter Abbeel, Anca Dragan, Sergey Levine. All CS188 materials are at http://ai.berkeley.edu.]

Today’s Topics

= Nalve Bayes
= Review: making predictions / inference
= Learning parameters

= Machine Learning Workflow

= Perceptrons
= Making predictions
= Learning parameters

Last Time

= Classification: given inputs x, predict labels (classes) y

‘ LI
= Convertinput x into a collection of features f1, ..., fn | W&%
Udentify the Object:
A) Dog

Feature Machine B) C
tracti ' 7 ar
. extraction ;] learning y "l C) Box
(input) (features) J (prediction) N | D) Alligator
) L

Last Time

= Naive Bayes model: P(Y,F,, ...,E,) = P(Y)[1; P(F;|Y)
= Features and label are random variables

= |nput features F;, ..., F,, are conditionally independent given label Y

» Parameters 0: probability tables P(Y), P(F;|Y), ..., P(E,|Y)

= (Classification is inference in a Bayes Net:
= |nference by enumeration
= Given features f, ..., f, probability over class labels is:

P(Yfus s f) % PV, oy s f) = PO | | PRIV

Enumerate over every label y:

[P(y1) I1; P(f;
P(y2) IT; P(f;

| P(yg) Hi.P(fi

Y1)
Y2)

Yk)

Normalize

m—)

P(y1
P(yo

P(ys

F1. ..
F1. ..

fi...

fn) |
fn)

fn)

Last Time

= Naive Bayes model: P(Y,Fy, ..., F,) = P(Y)[1; P(F;|Y)
= Features and label are random variables

= |nput features Fy, ..., F,, are conditionally independent given label Y
* Parameters 0: probability tables P(Y), P(F;|Y), ..., P(E,|Y)

= Learn parameters by counting:
: 2
= P(observing x) = # of times x occured For example: @ @ @ P(red) = -

total # of events

= Comes from Maximum Likelihood estimation: find @ that maximizes P(observations|@)
= @ = argmax P(observations|f)
6

= Take derivative and set to 0
= |n practice, maximize log P instead because derivatives are easier

= |n general for Naive Bayes maximum likelihood estimates of probability tables are:

of occurences of class y # of occurences of feature f and class y

P(fly)=

P(y) =

total # of observations total # of occurences of class y

Example: Naive Bayes for Spam Filtering

= Predict if an email is spam or not “
= Features: W;j is the i’th word in the email (domain: words in the dictionary)
» lLabels: Y € {spam, ham}

= Estimated parameters: P(W|Y)

P(Y)
PY) 2/6 4/6 P(W | Y=spam) 2/6 1/6 3/6
P(W | Y=ham) 1/6 4/6 1/6

= Whatis P(Y|"buy”, “now”)?

» P(spam|”’buy”,“now”) x P(spam)P (“buy”|spam)P (“now”|spam) = é %- % = z—g
» P(ham|’buy”, “now”) « P(ham)P (“buy”|ham)P (“now”|ham) = %° %. % = 64—3

= Renormalize: ham

P Y "bu "’ lanW"
(Y["buy) 12/16 4/16

= Prediction: pick label with highest probability, so predict spam for text “buy now”

Example: Naive Bayes for Spam Filtering

= Predict if an email is spam or not
= Features: W;j is the i’th word in the email (domain: words in the dictionary)
» lLabels: Y € {spam, ham}

= Estimated parameters:

P(W|Y)

P(Y)
PY) 2/6 4/6 P(W | Y=spam) 2/6 1/6 3/6
P(W | Y=ham) 1/6 4/6 1/6

= How can we estimate these model parameters?

Parameter Estimation

Parameter Estimation with Maximum Likelihood

= Estimating the distribution of a random variable

= Use training data (learning!)
= For each outcome x, look at the empirical rate of that value:

count(x)
P xr) =
mL () total samples

= Example: probability of x=red given training data @, @) @

P () =2/3 I T

= This estimate maximizes the likelihood of the data for parametric model:

L(0) = P(red,red,blue | 0) = Pg(red) - Pg(red) - Pg(blue) = 6% - (1 —0)

= Why? Take derivative and set to O:
A d0log L(6 2 1
@ = argmax L(6) = argmax log L(0) gL(6) =—4+——-—-1=21-60)—-06=2-30=0
0 0 d0 6 1-—6 >
2 log(0) + log(1 — 6) -0 = 3

Parameter Estimation with Maximum Likelihood (General Case)

x|] blue

= Model:

= Data: draw N balls, N,- come up red and N, come up blue
= Dataset D = {xq, ..., Xy}
= Ball draws are independent and identically distributed (i.i.d):

PIo) = | [Pulo) = | [Poxo = 0% - (1 - o)

= Maximum Likelihood Estimation: find 8 that maximizes P(D|8):
6 = argmax P(D|6) = argmaxlog P(D|8) » N, log(8) + N, log(1 — 6)
6 6

Take derivative and set to O:

dlogP(D|6) N, N, . N, # of red balls
= — = -0 =

90 6 1-6 N, + N, total # of balls

Parameter Estimation with Maximum Likelihood (General Case)

= Maximum Likelihood Estimation: find 8 that maximizes P(D|6):
6 = argmax P(D|@) = argmax log P(D|0) » N, log(8) + N, log(1 — 6)
0 0

Take derivative and set to O:

%log P(D|6) = % [N, log(8) + Ny log(1 —)]

= N % [log(6)] + Np, % log(1 — 6)]

1 1
= Nr5+me' —1
= Nr(l —0) — N, 0O
= N, — H(Nr+Nb) =0

Ny

50 =

Example: Spam Filtering Parameter Estimation

' Predict if an email is spam or not
= Features: W;j is the i’th word in the email (domain: words in the dictionary)
= labels: Y € {spam, ham}

= Naive Bayes model parameters:

Pe(W[Y)
PG(Y) “" V24

P(Y) P(W | Y=spam)
P(W | Y=ham)

" Dataset: M emails where k’th email contains words {wy, ..., wy, } and label y;
= Emails are independent and identically distributed:

M M Ng
P016) = | [PGrows oww) = | [PO0 | [Poviyio
k k i

= Maximum Likelihood Estimation: find 8 that maximizes P(D|8)

Example: Spam Filtering Parameter Estimation

= Predict if an email is spam or not
= Features: W;j is the i’th word in the email (domain: words in the dictionary)
» lLabels: Y € {spam, ham}

* Naive Bayes model parameters:
P9 (le) n

PG(Y) o V24

P(Y) P(W | Y=spam)
P(W | Y=ham)

= Maximum Likelihood Estimation Result:

of spam emails

| 9 -_

sSpam total # of emails

More generally: parameters for model P4 (F|Y) are:

= 9 __ #of occurences of word w in spam emails

w,spam — total # of spam emails # of occurences of feature f and class y

fy = total # of occurences of class y
. __ #of occurences of word w in ham emails
ew,ham -

total # of ham emails

Parameter Estimation with Maximum Likelihood

= How do we estimate the conditional probability tables?

= Maximum Likelihood, which corresponds to counting

= Need to be careful though ... let’s see what can go wrong..

What is the best way to fit this data?

Degree 15 polynomial

o o = o = onN [210)\V] o w
I I I I T 1

o
I

o L ol o
| T

Underfitting and Overfitting

P(features, C = 2)

P(C=2)=0.

P(on|C =2)=0.8
P(on|C =2) =0.1
P(offlCc =2) = 0.1

P(on|C =2) = 0.01

Example: Overfitting

2 wins!!

P(features,C = 3)

P(C=3)=0.1

P(on|C=3)=0.8
P(on|C =3) =0.9
P(off|C =3) =0.7

P(on|C =3) =0.0

Example: Overfitting

= relative probabilities (odds ratios):

P(W|ham) P(W|spam)
P(W|spam) P(W]ham)
south-west : inf screens : inf
nation : inf minute : inf
morally : inf guaranteed : 1inf
nicely : inf $205.00 : inf
extent : inf delivery : inf
seriously : inf signature : inf

What went wrong here?

Degree 15 polynomial

Overfitting

o —

Generalization and Overfitting

= Relative frequency parameters will overfit the training data!

= Just because we never saw a 3 with pixel (15,15) on during training doesn’t mean we won’t see it at
test time

= Unlikely that every occurrence of “minute” is 100% spam

= Unlikely that every occurrence of “seriously” is 100% ham

= What about all the words that don’t occur in the training set at all?
= |n general, we can’t go around giving unseen events zero probability

= As an extreme case, imagine using the entire email as the only feature

= Would get the training data perfect (if deterministic labeling)
= Wouldn’t generalize at all

= Just making the bag-of-words assumption gives us some generalization, but isn’t enough

= To generalize better: we need to smooth or regularize the estimates

Smoothing

Unseen Events

Laplace Smoothing

= Laplace’s estimate:

= Pretend you saw every outcome @ @ @
once more than you actually did
clz) +1

>ople(z) + 1] Py (X) =

_ c(xz) +1
N+ |X] Prap(X) =

Prap(x) =

Laplace Smoothing

= |Laplace’s estimate (extended):

= Pretend you saw every outcome k extra times @ @ @

Prapr(z) = ;(j_) 7;||_)];
| Prapo(X) =
= What’s Laplace with k =07
= kis the strength of the prior
Prapi1(X) =

Prap100(X) =

Laplace Smoothing Can Be More Formally Derived

= Relative frequencies are the maximum likelihood estimates
Onrrr, = arg max P(X]0) count(z)
total samples

> PuL(z) =

= arg max || Py(X;)
o

= Another option is to consider the most likely parameter value given the data

Orrap = arg max P(0|X)
0

= arg max P(X|0)P(0)/P(X)) “right” choice of P(theta)
0 -> Laplace estimates

= arg max P(X|0)P(0)
0

Estimation: Linear Interpolation®

= |n practice, Laplace can perform poorly for P(X|Y):
= When |X] is very large

= When |Y] is very large

= Another option: linear interpolation
= Also get the empirical P(X) from the data
= Make sure the estimate of P(X|Y) isn’t too different from the empirical P(X)

Prin(zly) = aP(z|ly) + (1.0 — o) P(x)
» Whatifis0? 17?

= For even better ways to estimate parameters, as well as details of
the math, see cs281a, cs288

Real NB: Smoothing

= For real classification problems, smoothing is critical
= New odds ratios:

P(W|ham) P(W|spam)
P(W|spam) P(W|ham)
helvetica : 11.4 verdana : 28.8
seems : 10.8 Credit : 28.4
group : 10.2 ORDER : 27.2
ago : 8.4 : 26.9
areas : 8.3 money : 26.5

Do these make more sense?

Tuning

TWEAK-Q - MATIC 9000

Tuning on Held-Out Data

= Now we’ve got two kinds of unknowns training
= Parameters: the probabilities P(X]Y), P(Y) >
= Hyperparameters: e.g. the amount of g
smoothing k =
o |held-out
= What should we learn where? © test
» Learn parameters from training data)

= Tune hyperparameters on different data
= Why?
» For each value of the hyperparameters, train
and test on the held-out data

» Choose the best value and do a final test on
the test data

Important Concepts

Data: labeled instances, e.g. emails marked spam/ham
= Training set
= Held out set
= Test set

Features: attribute-value pairs which characterize each
input

Experimentation cycle
= Learn parameters (e.g. model probabilities) on training set
= (Tune hyperparameters on held-out set)
= Compute accuracy on test set
= Very important: never “peek” at the test set!

Evaluation
= Accuracy: fraction of instances predicted correctly

Overfitting and generalization
= Want a classifier which does well on test data

= Qverfitting: fitting the training data very closely, but not
generalizing well

= Underfitting: fits the training set poorly

Training
Data

Held-Out
Data

Test
Data

Workflow

= Phase 1: Train model on Training Data. Choice points for “tuning”
= Attributes / Features
* Model types: Naive Bayes vs. Perceptron vs. Logistic Regression vs. Neural Net etc..
* Model hyperparameters
= E.g. Naive Bayes — Laplace k
= E.g. Logistic Regression — weight regularization
= E.g. Neural Net — architecture, learning rate, ...
= Make sure good performance on training data (why?)

= Phase 2: Evaluate on Hold-Out Data

* |f Hold-Out performance is close to Train performance
= We achieved good generalization, onto Phase 3! &>
* |f Hold-Out performance is much worse than Train performance
= We overfitted to the training data! (=
= Take inspiration from the errors and:
= Either: go back to Phase 1 for tuning (typically: make the model less expressive)

= Or: if we are out of options for tuning while maintaining high train accuracy, collect
more data (i.e., let the data drive generalization, rather than the tuning/regularization)
and go to Phase 1

= Phase 3: Report performance on Test Data

Possible outer-loop: Collect more data

Training
Data

Held-Out
Data

Test
Data

Practical Tip: Baselines

= First step: get a baseline
= Baselines are very simple “straw man” procedures
= Help determine how hard the task is
= Help know what a “good” accuracy is

= Weak baseline: most frequent label classifier
= Gives all test instances whatever label was most common in the training set
= E.g. for spam filtering, might label everything as ham
= Accuracy might be very high if the problem is skewed
= E.g. calling everything “ham” gets 66%, so a classifier that gets 70% isn’t very good...

= For real research, usually use previous work as a (strong) baseline

Perceptrons

Linear Classifiers

Feature Vectors

Hello,

Do you want free printr
cartriges? Why pay more
when you can get them
ABSOLUTELY FREE! Just

free

YOUR NAME
MISSPELLED
FROM_FRIEND

PIXEL-7,12
PIXEL-7,13

NUM_LOOPS

O N O N

o =

SPAM
or
HAM

“2”

Some (Simplified) Biology

= Very loose inspiration: human neurons

<__—/"’———‘—////”;xonaIarboﬂzaﬁon

\ Axon from another cell

\/ =

Synapses

Cell body or Soma

Linear Classifiers

Inputs are feature values
Each feature has a weight
Sum is the activation

activationy(z) =Y w; - fi(z) = w- f(x)

If the activation is:
= Positive, output +1
= Negative, output -1

2

Weights

= Binary case: compare features to a weight vector
= Learning: figure out the weight vector from examples

free 4
YOUR_NAME :=1
MISSPELLED 1 # free : 2
FROM_FRIEND =3 w YOUR_NAME 0
MISSPELLED : 2
'CB 1 FROM_FRIEND : 0
f(:B) # free M O
2 YOUR_NAME 1
i MISSPELLED 1
Dot product w - f positive bron RToND . 1

means the positive class

Decision Rules

Binary Decision Rule

= |n the space of feature vectors
= Examples are points
= Any weight vector is a hyperplane

= One side corresponds to Y=+1

Other corresponds to Y=-1

)
2 2
O
w =
1 w
free : 4
money : 2 /
0
0 1

free

Binary Decision Rule

= |n the space of feature vectors
= Examples are points
= Any weight vector is a hyperplane

= One side corresponds to Y=+1

Other corresponds to Y=-1

)

2 2

O

w =
1 w

BIAS : =3
free : 4
money : 2 0
S 0 1 free

Binary Decision Rule

= |n the space of feature vectors
= Examples are points
= Any weight vector is a hyperplane

= One side corresponds to Y=+1

Other corresponds to Y=-1

)
o 2
=
w +1 = SPAM
1
BIAS : =3
free 4
money : 2 0
-1 =HAM 0 1 free

Weight Updates

Learning: Binary Perceptron

= Start with weightsw =0
= For each training instance f(x), y*:
= Classify with current weights

= |f correct (i.e., y=y*), no change!

= |f wrong: adjust the weight vector

Learning: Binary Perceptron

= Start with weightsw =0
= For each training instance f(x), y*:
= Classify with current weights
*
| y - f
1L i we f(x) >0
YT i w- fle) <0

= |f correct (i.e., y=y*), no change!

= |f wrong: adjust the weight vector by
adding or subtracting the feature
vector. Subtract if y* is -1.

w=w+y" f

Learning: Binary Perceptron

oJ
-I

= Start with weightsw =0
= For each training instance f(x), y*:
= Classify with current weights

—1 if w-f(zx) <0

= |f correct (i.e., y=y*), no change!

= |f wrong: adjust the weight vector by
adding or subtracting the feature
vector. Subtract if y* is -1. wef

y_{+1 it w- f(z) >0 i f i»

w=w+y" f

Example: Perceptron

Iteration “win the vote” f(x): [1 1 01 1] y*: -1

0
Iteration 1: x: “win the election” f(x): [1 1 0 0 1] vy ¥: -1
Iteration 2: x: "“win the game” f(x): [1 1 1 O 1] y*¥: +1
3

Iteration x: “win the game” f(x): [1 1 1 0 1] yv*¥: +1

w
BIAS 1 0 0 1
win 0 -1 -1 0
game 0 0 0 1
vote 0 -1 -1 -1
the 0 -1 -1 0
w- f(x): 1 -2 -2 2

Example: Perceptron

= Separable Case

45
35
Pt

15} yd o)

051

Multiclass Decision Rule

= |f we have multiple classes:
= A weight vector for each class:

Wy
= Score (activation) of a class y:

= Prediction highest score wins

y = argmax wy - f(x)
y

/—:
o ©O
+ -i-: v 4 o O O O
+ + 71 o
w1y - f biggest
w1
W
wo 3
w3 - f
b%zge];t biggest

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron

Start with all weights =0
Pick up training examples f(x), y* one by one
Predict with current weights

y = argmax, wy - f(x)

If correct, no change!

If wrong: lower score of wrong answer, raise
score of right answer

wy = wy — f(x)

Wopx = Wyy* +f($)

Example: Multiclass Perceptron

Iteration 0: x:

Iteration 1: x:

Iteration 2: x:
WSPORTS
BIAS 1 0 0 1
win O (-1 -11] O
game 0 0 0 1
vote O -1 -1|-1
the OJ-11-11] O
w-f(x): 1. -2 -2

“win the vote” f(x): [1 1 0 1 1] y*: politics

“win the election” f(x): [1 1 0 0 1] y*: politics

“win the game” f(x): [1 1 1 0 1] y*: sports
WpOLITICS WTECH
BIAS || O 1 1 0 BIAS || O 0 0 0
win 0 1 1 0 win 0 0 0 0
game 0 0 0 || -1 game 0 0 0 0
vote 0 1 1 1 vote 0 0 0 0
the 0 1 1 0 the 0 0 0 0

w-f(x): 0 3 3

w-f(x): 0 0 0

Properties of Perceptrons

. . . Separable
= Separability: true if some parameters get the training set
erfectly correct
P y S
= Convergence: if the training is separable, perceptron will - - .

eventually converge (binary case)

= Mistake Bound: the maximum number of mistakes (binary

case) related to the margin or degree of separability Non-Separable

Problems with the Perceptron

= Noise: if the data isn’t separable,
weights might thrash

= Averaging weight vectors over time
can help (averaged perceptron)

= Mediocre generalization: finds a
“barely” separating solution

o training
= Qvertraining: test / held-out >
accuracy usually rises, then falls @
= Qvertraining is a kind of overfitting o tEst
@)
© held-out

iterations

Next Lecture: Improving Perceptron & Optimization

Improving the Perceptron

Non-Separable Case: Deterministic Decision

Even the best linear boundary makes at least one mistake

Non-Separable Case: Probabilistic Decision

& 09]0.1
0.7]0.3

4+ 0.5] 0.5
35} 0.3] 0.7
3l
25}
Al
15}

How to get probabilistic decisions?

Perceptron scoring: 2z = w - f(z)

Sigmoid function

(2)

1

f z=w- flery positive [1 want probability going to 1
f 2 =w. fuery negative LI want probability going to O

1l +e %

Pl 1+e®

-

: 1 ‘J
0.0}

-8 -6 -4 -2 0

2

A 1D Example

P(red|z)
A o |
S|
|
I almost 1.0
|
|
almost 0.0
— |
o O O 0 0 0 6060 00 0 O >
\ J \ J \ J L
Y Y Y
definitely blue not sure definitely red

probability increases exponentially
. /
eWred X as we move away from boundary

P(red|z) =

eWred'T 4 eWblue'® = normalizer

The Soft Max

5'LUred L

P(red|z)
A e

€5wred L _|_ 65wblue L

6100wred X

6100wred-:c + elOOwblue-a:

. looks like max, wy - x

ewred L

ewred X + ewblue L

- - 0 0 0 006 006 0 ©

S

ewred "L

ewred L _|— ewblue L

P(red|z) =

Best w?

= Maximum likelihood estimation:

w

max [[(w) = max ZIOgP(y(i)\x(i);w)

. . 1
. (i) _ (7). 0y) —

1

P(y(i) _ _Hx(i);w) — 1] | & o—w fa®)

= Logistic Regression

Separable Case: Deterministic Decision — Many Options

5 5
4.5 45 F
i i + +
3.5+ 3.5
3t 3 g
2.9 2ot
& 2 o o
15+ 15l
T 1 o o
0.5 05l
U c d & 2 4 é : 0 1 2 3 4 5

Separable Case: Probabilistic Decision — Clear Preference

Multiclass Logistic Regression

w1y - f biggest
= Recall Perceptron: w1
= A weight vector for each class: wy
= Score (activation) of a class y: Wy - f(g;) w3
w2
= Prediction highest score wins y = arg max wy, - f(x) ws . f w3 - f
Yy biggest biggest
= How to make the scores into probabilities?
< < A
e~! e~? e~s

Z1yR2yR3 —7 ; ;
e*l 4+ e*2 +e*3 el +e*2 + e*3 e*l + e*2 4 e*3

| J L J
| Y

original activations softmax activations

Best w?

= Maximum likelihood estimation:

max [[(w) = max ZIOgP(y(i)\x(i);w)

w

oWy () f(x(D)

with: P(y(i)‘x(i)Sw) — (D)
Zy eWwy f(z(*)

= Multi-Class Logistic Regression

Next Lecture
= Optimization
= i.e., how do we solve:

w

max [[(w) = max ZlogP(y(i)\aﬁ(i);w)

