
CS 188: Artificial Intelligence
Naïve Bayes and Perceptrons

[These slides were created by Dan Klein, Pieter Abbeel, Anca Dragan, Sergey Levine. All CS188 materials are at http://ai.berkeley.edu.]

Today’s Topics

▪ Naïve Bayes
▪ Review: making predictions / inference

▪ Learning parameters

▪ Machine Learning Workflow

▪ Perceptrons
▪ Making predictions

▪ Learning parameters

Last Time

▪

x
(input)

y
(prediction)

f
(features)

Feature
extraction

Machine
learning

Last Time

▪ Y

F

1

F

n

F

2

Enumerate over every label y:

Normalize

Last Time

▪ Y

F

1

F

n

F

2

r r b For example:

Example: Naïve Bayes for Spam Filtering

▪ Y

W

1

W

n

W

2

W “now” “the” “buy”

P(W | Y=spam) 2/6 1/6 3/6

P(W | Y=ham) 1/6 4/6 1/6

Y spam ham

P(Y) 2/6 4/6

spam ham

12/16 4/16

Example: Naïve Bayes for Spam Filtering

▪ Y

W

1

W

n

W

2

W “now” “the” “buy”

P(W | Y=spam) 2/6 1/6 3/6

P(W | Y=ham) 1/6 4/6 1/6

Y spam ham

P(Y) 2/6 4/6

Parameter Estimation

Parameter Estimation with Maximum Likelihood

▪

r r b

X red blue

Take derivative and set to 0:

Parameter Estimation with Maximum Likelihood (General Case)

▪
X red blue

Parameter Estimation with Maximum Likelihood (General Case)

▪

Example: Spam Filtering Parameter Estimation

▪
Y

W

1

W

n

W

2

W “now” “the” …
P(W | Y=spam) …

P(W | Y=ham) …

Y spam ham

P(Y)

Example: Spam Filtering Parameter Estimation

▪
Y

W

1

W

n

W

2

W “now” “the” …
P(W | Y=spam) …

P(W | Y=ham) …

Y spam ham

P(Y)

Parameter Estimation with Maximum Likelihood

▪ How do we estimate the conditional probability tables?

▪ Maximum Likelihood, which corresponds to counting

▪ Need to be careful though … let’s see what can go wrong..

0 2 4 6 8 1
0

1
2

1
4

1
6

1
8

2
0

-1
5

-1
0

-
5

0

5

1
0

1
5

2
0

2
5

3
0

Degree 15 polynomial

What is the best way to fit this data?

x

y

Underfitting and Overfitting

Example: Overfitting

2 wins!!

Example: Overfitting

▪ relative probabilities (odds ratios):

south-west : inf
nation : inf
morally : inf
nicely : inf
extent : inf
seriously : inf
...

What went wrong here?

screens : inf
minute : inf
guaranteed : inf
$205.00 : inf
delivery : inf
signature : inf
...

0 2 4 6 8 1
0

1
2

1
4

1
6

1
8

2
0

-1
5

-1
0

-
5

0

5

1
0

1
5

2
0

2
5

3
0

Degree 15 polynomial

Overfitting

Generalization and Overfitting

▪ Relative frequency parameters will overfit the training data!
▪ Just because we never saw a 3 with pixel (15,15) on during training doesn’t mean we won’t see it at

test time
▪ Unlikely that every occurrence of “minute” is 100% spam
▪ Unlikely that every occurrence of “seriously” is 100% ham
▪ What about all the words that don’t occur in the training set at all?
▪ In general, we can’t go around giving unseen events zero probability

▪ As an extreme case, imagine using the entire email as the only feature
▪ Would get the training data perfect (if deterministic labeling)
▪ Wouldn’t generalize at all
▪ Just making the bag-of-words assumption gives us some generalization, but isn’t enough

▪ To generalize better: we need to smooth or regularize the estimates

Smoothing

Unseen Events

Laplace Smoothing

▪ Laplace’s estimate:
▪ Pretend you saw every outcome

once more than you actually did
r r b

Laplace Smoothing

▪ Laplace’s estimate (extended):
▪ Pretend you saw every outcome k extra times

▪ What’s Laplace with k = 0?
▪ k is the strength of the prior

r r b

Laplace Smoothing Can Be More Formally Derived

▪ Relative frequencies are the maximum likelihood estimates

▪ Another option is to consider the most likely parameter value given the data

“right” choice of P(theta)
-> Laplace estimates

Estimation: Linear Interpolation*

▪ In practice, Laplace can perform poorly for P(X|Y):
▪ When |X| is very large
▪ When |Y| is very large

▪ Another option: linear interpolation
▪ Also get the empirical P(X) from the data
▪ Make sure the estimate of P(X|Y) isn’t too different from the empirical P(X)

▪ What if α is 0? 1?

▪ For even better ways to estimate parameters, as well as details of
the math, see cs281a, cs288

Real NB: Smoothing

▪ For real classification problems, smoothing is critical

▪ New odds ratios:

helvetica : 11.4
seems : 10.8
group : 10.2
ago : 8.4
areas : 8.3
...

verdana : 28.8
Credit : 28.4
ORDER : 27.2
 : 26.9
money : 26.5
...

Do these make more sense?

Tuning

Tuning on Held-Out Data

▪ Now we’ve got two kinds of unknowns
▪ Parameters: the probabilities P(X|Y), P(Y)
▪ Hyperparameters: e.g. the amount of

smoothing k

▪ What should we learn where?
▪ Learn parameters from training data
▪ Tune hyperparameters on different data

▪ Why?

▪ For each value of the hyperparameters, train
and test on the held-out data
▪ Choose the best value and do a final test on

the test data

Important Concepts

▪ Data: labeled instances, e.g. emails marked spam/ham
▪ Training set
▪ Held out set
▪ Test set

▪ Features: attribute-value pairs which characterize each
input

▪ Experimentation cycle
▪ Learn parameters (e.g. model probabilities) on training set
▪ (Tune hyperparameters on held-out set)
▪ Compute accuracy on test set
▪ Very important: never “peek” at the test set!

▪ Evaluation
▪ Accuracy: fraction of instances predicted correctly

▪ Overfitting and generalization
▪ Want a classifier which does well on test data
▪ Overfitting: fitting the training data very closely, but not

generalizing well
▪ Underfitting: fits the training set poorly

Training
Data

Held-Out
Data

Test
Data

Workflow

▪ Phase 1: Train model on Training Data. Choice points for “tuning”
▪ Attributes / Features
▪ Model types: Naïve Bayes vs. Perceptron vs. Logistic Regression vs. Neural Net etc..
▪ Model hyperparameters

▪ E.g. Naïve Bayes – Laplace k
▪ E.g. Logistic Regression – weight regularization
▪ E.g. Neural Net – architecture, learning rate, …

▪ Make sure good performance on training data (why?)

▪ Phase 2: Evaluate on Hold-Out Data
▪ If Hold-Out performance is close to Train performance

▪ We achieved good generalization, onto Phase 3! ☺
▪ If Hold-Out performance is much worse than Train performance

▪ We overfitted to the training data! ☹
▪ Take inspiration from the errors and:

▪ Either: go back to Phase 1 for tuning (typically: make the model less expressive)
▪ Or: if we are out of options for tuning while maintaining high train accuracy, collect

more data (i.e., let the data drive generalization, rather than the tuning/regularization)
and go to Phase 1

▪ Phase 3: Report performance on Test Data

Possible outer-loop: Collect more data

Training
Data

Held-Out
Data

Test
Data

Practical Tip: Baselines

▪ First step: get a baseline
▪ Baselines are very simple “straw man” procedures
▪ Help determine how hard the task is
▪ Help know what a “good” accuracy is

▪ Weak baseline: most frequent label classifier
▪ Gives all test instances whatever label was most common in the training set
▪ E.g. for spam filtering, might label everything as ham
▪ Accuracy might be very high if the problem is skewed
▪ E.g. calling everything “ham” gets 66%, so a classifier that gets 70% isn’t very good…

▪ For real research, usually use previous work as a (strong) baseline

Perceptrons

Linear Classifiers

Feature Vectors

Hello,

Do you want free printr
cartriges? Why pay more
when you can get them
ABSOLUTELY FREE! Just

free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
...

SPAM
or

HAM

PIXEL-7,12 : 1
PIXEL-7,13 : 0
...
NUM_LOOPS : 1
...

“2”

Some (Simplified) Biology

▪ Very loose inspiration: human neurons

Linear Classifiers

▪ Inputs are feature values
▪ Each feature has a weight
▪ Sum is the activation

▪ If the activation is:
▪ Positive, output +1
▪ Negative, output -1 Σ

f1
f2
f3

w1

w2

w3

>0
?

Weights

▪ Binary case: compare features to a weight vector

▪ Learning: figure out the weight vector from examples

free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
...

free : 4
YOUR_NAME :-1
MISSPELLED : 1
FROM_FRIEND :-3
...

free : 0
YOUR_NAME : 1
MISSPELLED : 1
FROM_FRIEND : 1
...

Dot product positive
means the positive class

Decision Rules

Binary Decision Rule

▪ In the space of feature vectors
▪ Examples are points

▪ Any weight vector is a hyperplane

▪ One side corresponds to Y=+1

▪ Other corresponds to Y=-1

free : 4
money : 2

0 1
0

1

2

free
m

on
ey

Binary Decision Rule

▪ In the space of feature vectors
▪ Examples are points

▪ Any weight vector is a hyperplane

▪ One side corresponds to Y=+1

▪ Other corresponds to Y=-1

BIAS : -3
free : 4
money : 2
... 0 1

0

1

2

free
m

on
ey

Binary Decision Rule

▪ In the space of feature vectors
▪ Examples are points

▪ Any weight vector is a hyperplane

▪ One side corresponds to Y=+1

▪ Other corresponds to Y=-1

BIAS : -3
free : 4
money : 2
... 0 1

0

1

2

free
m

on
ey

+1 = SPAM

-1 = HAM

Weight Updates

Learning: Binary Perceptron

▪ Start with weights w = 0
▪ For each training instance f(x), y*:
▪ Classify with current weights

▪ If correct (i.e., y=y*), no change!

▪ If wrong: adjust the weight vector

Learning: Binary Perceptron

▪ Start with weights w = 0
▪ For each training instance f(x), y*:
▪ Classify with current weights

▪ If correct (i.e., y=y*), no change!
▪ If wrong: adjust the weight vector by

adding or subtracting the feature
vector. Subtract if y* is -1.

Learning: Binary Perceptron

▪ Start with weights w = 0
▪ For each training instance f(x), y*:
▪ Classify with current weights

▪ If correct (i.e., y=y*), no change!
▪ If wrong: adjust the weight vector by

adding or subtracting the feature
vector. Subtract if y* is -1.

Before update: After update:

Example: Perceptron

Iteration 0: x: “win the vote” f(x): [1 1 0 1 1] y*: -1

Iteration 1: x: “win the election” f(x): [1 1 0 0 1] y*: -1

Iteration 2: x: “win the game” f(x): [1 1 1 0 1] y*: +1

Iteration 3: x: “win the game” f(x): [1 1 1 0 1] y*: +1

BIAS

win

game

vote

the

1

0

0

0

0

1

0

-1

0

-1

-1

-2

0

-1

0

-1

-1

-2

1

0

1

-1

0

2

Example: Perceptron

▪ Separable Case

Multiclass Decision Rule

▪ If we have multiple classes:
▪ A weight vector for each class:

▪ Score (activation) of a class y:

▪ Prediction highest score wins

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron

▪ Start with all weights = 0
▪ Pick up training examples f(x), y* one by one
▪ Predict with current weights

▪ If correct, no change!
▪ If wrong: lower score of wrong answer, raise

score of right answer

Example: Multiclass Perceptron

Iteration 0: x: “win the vote” f(x): [1 1 0 1 1] y*: politics

Iteration 1: x: “win the election” f(x): [1 1 0 0 1] y*: politics

Iteration 2: x: “win the game” f(x): [1 1 1 0 1] y*: sports

BIAS

win

game

vote

the

1

0

0

0

0

1

0

-1

0

-1

-1

-2

0

-1

0

-1

-1

-2

1

0

1

-1

0

BIAS

win

game

vote

the

0

0

0

0

0

0

1

1

0

1

1

3

1

1

0

1

1

3

0

0

-1

1

0

BIAS

win

game

vote

the

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Properties of Perceptrons

▪ Separability: true if some parameters get the training set
perfectly correct

▪ Convergence: if the training is separable, perceptron will
eventually converge (binary case)

▪ Mistake Bound: the maximum number of mistakes (binary
case) related to the margin or degree of separability

Separable

Non-Separable

Problems with the Perceptron

▪ Noise: if the data isn’t separable,
weights might thrash
▪ Averaging weight vectors over time

can help (averaged perceptron)

▪ Mediocre generalization: finds a
“barely” separating solution

▪ Overtraining: test / held-out
accuracy usually rises, then falls
▪ Overtraining is a kind of overfitting

Next Lecture: Improving Perceptron & Optimization

Improving the Perceptron

Non-Separable Case: Deterministic Decision

Even the best linear boundary makes at least one mistake

Non-Separable Case: Probabilistic Decision

0.5 | 0.5

0.3 | 0.7

0.1 | 0.9

0.7 | 0.3

0.9 | 0.1

How to get probabilistic decisions?

▪ Perceptron scoring:

▪ If very positive 🡪 want probability going to 1

▪ If very negative 🡪 want probability going to 0

▪ Sigmoid function

A 1D Example

definitely blue definitely rednot sure

probability increases exponentially
as we move away from boundary

normalizer

The Soft Max

Best w?

▪ Maximum likelihood estimation:

with:

= Logistic Regression

Separable Case: Deterministic Decision – Many Options

Separable Case: Probabilistic Decision – Clear Preference

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3

Multiclass Logistic Regression

▪ Recall Perceptron:
▪ A weight vector for each class:

▪ Score (activation) of a class y:

▪ Prediction highest score wins

▪ How to make the scores into probabilities?

original activations softmax activations

Best w?

▪ Maximum likelihood estimation:

with:

= Multi-Class Logistic Regression

Next Lecture

▪ Optimization

▪ i.e., how do we solve:

