
Announcements

§ Project 4 due today (Thursday, Nov 14) at 11:59pm PT

§ Catherine Olsson (Anthropic) giving guest lecture next Tuesday 
(Nov 19) on large model development and interpretability
§ Come in person and ask questions!



CS 188: Artificial Intelligence
Logistic Regression and Neural Networks

[These slides were created by Dan Klein, Pieter Abbeel, Anca Dragan, Sergey Levine.  All CS188 materials are at http://ai.berkeley.edu.]



Last Time: Perceptron

§ Inputs are feature values
§ Each feature has a weight
§ Sum is the activation

§ If the activation is:
§ Positive, output +1
§ Negative, output -1
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Last Time: Perceptron

§ Inputs are feature values
§ Each feature has a weight
§ Sum is the activation

§ If the activation is:
§ Positive, output +1
§ Negative, output -1
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Originated from computationally modeling neurons:



Binary Decision Rule

§ In the space of feature vectors
§ Examples are points
§ Any weight vector is a hyperplane
§ One side corresponds to Y=+1
§ Other corresponds to Y=-1

BIAS  : -3
free  :  4
money :  2
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Learning: Binary Perceptron

§ Start with weights w = 0
§ For each training instance f(x), y*:

§ Classify with current weights

§ If correct (i.e., y=y*), no change!
§ If wrong: adjust the weight vector by 

adding or subtracting the feature 
vector. Subtract if y* is -1.



Learning: Binary Perceptron

§ Start with weights w = 0
§ For each training instance f(x), y*:

§ Classify with current weights

§ If correct: (i.e., y=y*), no change!
§ If wrong: adjust the weight vector by 

adding or subtracting the feature 
vector. Subtract if y* is -1.

Before update: After update:

𝑤 ⋅ 𝑓 𝑤 + 𝑦∗ ⋅ 𝑓 ⋅ 𝑓
= 𝑤 ⋅ 𝑓 + 𝑦∗ ⋅ 𝑓 ⋅ 𝑓



Multiclass Decision Rule

§ If we have multiple classes:
§ A weight vector for each class:

§ Score (activation) of a class y:

§ Prediction highest score wins

Binary = multiclass where the negative class has weight zero



Learning: Multiclass Perceptron

§ Start with all weights = 0
§ Pick up training examples f(x), y* one by one
§ Predict with current weights

§ If correct: no change!
§ If wrong: lower score of wrong answer, raise 

score of right answer

Predicted Class

True Class



Learning: Multiclass Perceptron

§ Start with all weights = 0
§ Pick up training examples f(x), y* one by one
§ Predict with current weights

§ If correct: no change!
§ If wrong: lower score of wrong answer, raise 

score of right answer

Before update: After update:

Score of wrong class:
𝑤" ⋅ 𝑓

Score of right class:
𝑤"∗ ⋅ 𝑓

Score of wrong class:
𝑤" − 𝑓 ⋅ 𝑓

= 𝑤" ⋅ 𝑓 − 𝑓 ⋅ 𝑓

Score of right class:
𝑤"∗ ⋅ 𝑓 + 𝑓 ⋅ 𝑓



Example: Multiclass Perceptron

Iteration 0: x: “win the vote”   f(x): [1 1 0 1 1]   y*: politics 

Iteration 1: x: “win the election”  f(x): [1 1 0 0 1]   y*: politics 

Iteration 2: x: “win the game”   f(x): [1 1 1 0 1]   y*: sports
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Properties of Perceptrons

§ Separability: true if some parameters get the training set 
perfectly correct

§ Convergence: if the training is separable, perceptron will 
eventually converge (binary case)

§ Mistake Bound: the maximum number of mistakes (binary 
case) related to the margin or degree of separability

Separable

Non-Separable

#	of	mistakes	during	training <
#	of	features

width	of	margin !



Problems with the Perceptron

§ Noise: if the data isn’t separable, 
weights might thrash
§ Averaging weight vectors over time 

can help (averaged perceptron)

§ Mediocre generalization: finds a 
“barely” separating solution

§ Overtraining: test / held-out 
accuracy usually rises, then falls
§ Overtraining is a kind of overfitting



Improving the Perceptron



Non-Separable Case: Deterministic Decision
Even the best linear boundary makes at least one mistake



Non-Separable Case: Probabilistic Decision

0.5 | 0.5
0.3 | 0.7

0.1 | 0.9

0.7 | 0.3
0.9 | 0.1



How to get probabilistic decisions?

§ Perceptron scoring:
§ If           very positive à want probability of + going to 1
§ If            very negative à want probability of + going to 0

z = w · f(x)
z = w · f(x)

z = w · f(x)

𝑧 = 0

𝑤

𝑧 > 0

𝑧 < 0



How to get probabilistic decisions?

§ Perceptron scoring:
§ If           very positive à want probability of + going to 1
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§ Sigmoid function
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z = w · f(x)

z = w · f(x)
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𝑒4 + 1



How to get probabilistic decisions?

§ Perceptron scoring:
§ If           very positive à want probability of + going to 1
§ If            very negative à want probability of + going to 0

§ Sigmoid function

z = w · f(x)
z = w · f(x)

z = w · f(x)

�(z) =
1

1 + e�z

= Logistic Regression

 𝑃 𝑦 = 	+1	 𝑥	; 𝑤) = !
!"#!"⋅$(&)

 
 𝑃 𝑦 = −1	 𝑥	; 𝑤) = 1 − !

!"#!"⋅$(&)



A 1D Example

definitely blue definitely rednot sure

𝑃 𝑟𝑒𝑑 𝑥	; 𝑤 = 𝜙 𝑤 ⋅ 𝑓(𝑥) =
1

1 + 𝑒56⋅8(:)

𝑃 𝑟𝑒𝑑 𝑥

𝑓(𝑥)



𝑤 = 10

𝑤 = 1

A 1D Example: varying w

𝑃 𝑟𝑒𝑑 𝑥

𝑓(𝑥)

𝑃 𝑟𝑒𝑑 𝑥	; 𝑤 = 𝜙 𝑤 ⋅ 𝑓(𝑥) =
1

1 + 𝑒$%⋅'())

𝑤 = ∞



A 1D Example: varying w
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A 1D Example: varying w

𝑃 𝑟𝑒𝑑 𝑥

𝑓(𝑥)



Best w? 

§ Recall maximum likelihood estimation: Choose the w value that 
maximizes the probability of the observed (training) data



Best w? 

§ Recall maximum likelihood estimation: Choose the w value that 
maximizes the probability of the observed (training) data



Separable Case: Deterministic Decision – Many Options



Separable Case: Probabilistic Decision – Clear Preference

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3



Multiclass Logistic Regression



Multiclass Logistic Regression

§ Recall Perceptron:
§ A weight vector for each class:

§ Score (activation) of a class y:       z	=

§ Prediction highest score wins

§ How to make the scores into probabilities? 

§ In general:  softmax 𝑧+, . . . , 𝑧, = [ -
!"
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z1, z2, z3 ! ez1

ez1 + ez2 + ez3
,

ez2
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,

ez3

ez1 + ez2 + ez3

original activations softmax activations



Multiclass Logistic Regression

§ Recall Perceptron:
§ A weight vector for each class:

§ Score (activation) of a class y:       z	=

§ Prediction highest score wins

§ How to make the scores into probabilities? 

= Multi-Class Logistic Regression

 𝑃 𝑦	 𝑥	; 𝑤) = !!"⋅$(&)

∑"( !
!"(⋅$(&)



Best w? 

§ Maximum likelihood estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

P (y(i)|x(i);w) =
ewy(i) ·f(x(i))

P
y e

wy·f(x(i))

= Multi-Class Logistic Regression



Logistic Regression for 3-way classification
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Logistic Regression for 3-way classification
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Deep Neural Network for 3-way classification
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Deep Neural Network for 3-way classification
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Deep Neural Network for 3-way classification
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• Neural network with L layers
• ℎ()): activations at layer l
• 𝑤()): weights taking activations 

from layer l-1 to layer l
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Deep Neural Network for 3-way classification
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Deep Neural Network for 3-way classification
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• Sometimes also called Multi-Layer Perceptron (MLP) or Feed-Forward Network (FFN)



It is a component of larger Transformer Models*

Attention is all you need, 
Vaswani et al, 2017



Common Activation Functions 𝜙

[source: MIT 6.S191 introtodeeplearning.com] 



Deep Neural Network Training

Training the deep neural network is just like logistic regression:

  just w tends to be a much, much larger vector



How do we maximize functions?

In general, cannot always take derivative and set to 0

Use numerical optimization!

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)



Hill Climbing

Recall from CSPs lecture: simple, general idea
Start wherever
Repeat: move to the best neighboring state
If no neighbors better than current, quit

What’s particularly tricky when hill-climbing for multiclass 
logistic regression?
• Optimization over a continuous space
• Infinitely many neighbors!
• How to do this efficiently?



Next Time: Optimization and more Neural Networks!



Naïve Bayes vs Logistic Regression
Naïve Bayes Logistic Regression

Model Joint over all features and label:
𝑃(𝑌, 𝐹", 𝐹!, … )

Conditional:
𝑃 𝑦	 𝑓", 𝑓!, … ; 	𝑤)

Predicted class probabilities Inference in a Bayes Net:
𝑃 𝑌	 𝑓 ∝ 𝑃 𝑌 	𝑃(𝑓"|𝑌)…

Directly output label:
𝑃 𝑦 = +1	 𝑓; 	𝑤) 	= 1/(1 + 𝑒()⋅+)

Features Discrete Discrete or Continuous

Parameters Entries of probability tables 𝑃(𝑌) 
and 𝑃(𝐹,|𝑌)

Weight vector 𝑤

Learning Counting occurrences of events Iterative numerical optimization


