
Announcements

§ Project 4 due today (Thursday, Nov 14) at 11:59pm PT

§ Catherine Olsson (Anthropic) giving guest lecture next Tuesday
(Nov 19) on large model development and interpretability
§ Come in person and ask questions!

CS 188: Artificial Intelligence
Logistic Regression and Neural Networks

[These slides were created by Dan Klein, Pieter Abbeel, Anca Dragan, Sergey Levine. All CS188 materials are at http://ai.berkeley.edu.]

Last Time: Perceptron

§ Inputs are feature values
§ Each feature has a weight
§ Sum is the activation

§ If the activation is:
§ Positive, output +1
§ Negative, output -1

S
f1
f2
f3

w1

w2

w3
>0?

Last Time: Perceptron

§ Inputs are feature values
§ Each feature has a weight
§ Sum is the activation

§ If the activation is:
§ Positive, output +1
§ Negative, output -1

S
f1
f2
f3

w1

w2

w3
>0?

Originated from computationally modeling neurons:

Binary Decision Rule

§ In the space of feature vectors
§ Examples are points
§ Any weight vector is a hyperplane
§ One side corresponds to Y=+1
§ Other corresponds to Y=-1

BIAS : -3
free : 4
money : 2
... 0 1

0

1

2

free
m

on
ey

+1 = SPAM

-1 = HAM

Learning: Binary Perceptron

§ Start with weights w = 0
§ For each training instance f(x), y*:

§ Classify with current weights

§ If correct (i.e., y=y*), no change!
§ If wrong: adjust the weight vector by

adding or subtracting the feature
vector. Subtract if y* is -1.

Learning: Binary Perceptron

§ Start with weights w = 0
§ For each training instance f(x), y*:

§ Classify with current weights

§ If correct: (i.e., y=y*), no change!
§ If wrong: adjust the weight vector by

adding or subtracting the feature
vector. Subtract if y* is -1.

Before update: After update:

𝑤 ⋅ 𝑓 𝑤 + 𝑦∗ ⋅ 𝑓 ⋅ 𝑓
= 𝑤 ⋅ 𝑓 + 𝑦∗ ⋅ 𝑓 ⋅ 𝑓

Multiclass Decision Rule

§ If we have multiple classes:
§ A weight vector for each class:

§ Score (activation) of a class y:

§ Prediction highest score wins

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron

§ Start with all weights = 0
§ Pick up training examples f(x), y* one by one
§ Predict with current weights

§ If correct: no change!
§ If wrong: lower score of wrong answer, raise

score of right answer

Predicted Class

True Class

Learning: Multiclass Perceptron

§ Start with all weights = 0
§ Pick up training examples f(x), y* one by one
§ Predict with current weights

§ If correct: no change!
§ If wrong: lower score of wrong answer, raise

score of right answer

Before update: After update:

Score of wrong class:
𝑤" ⋅ 𝑓

Score of right class:
𝑤"∗ ⋅ 𝑓

Score of wrong class:
𝑤" − 𝑓 ⋅ 𝑓

= 𝑤" ⋅ 𝑓 − 𝑓 ⋅ 𝑓

Score of right class:
𝑤"∗ ⋅ 𝑓 + 𝑓 ⋅ 𝑓

Example: Multiclass Perceptron

Iteration 0: x: “win the vote” f(x): [1 1 0 1 1] y*: politics

Iteration 1: x: “win the election” f(x): [1 1 0 0 1] y*: politics

Iteration 2: x: “win the game” f(x): [1 1 1 0 1] y*: sports

BIAS

win

game

vote

the

1

0

0

0

0

1𝑤 ⋅ 𝑓 𝑥 :

0

-1

0

-1

-1

-2

0

-1

0

-1

-1

-2

1

0

1

-1

0

BIAS

win

game

vote

the

0

0

0

0

0

0𝑤 ⋅ 𝑓 𝑥 :

1

1

0

1

1

3

1

1

0

1

1

3

0

0

-1

1

0

BIAS

win

game

vote

the

0

0

0

0

0

0𝑤 ⋅ 𝑓 𝑥 :

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Properties of Perceptrons

§ Separability: true if some parameters get the training set
perfectly correct

§ Convergence: if the training is separable, perceptron will
eventually converge (binary case)

§ Mistake Bound: the maximum number of mistakes (binary
case) related to the margin or degree of separability

Separable

Non-Separable

#	of	mistakes	during	training <
#	of	features

width	of	margin !

Problems with the Perceptron

§ Noise: if the data isn’t separable,
weights might thrash
§ Averaging weight vectors over time

can help (averaged perceptron)

§ Mediocre generalization: finds a
“barely” separating solution

§ Overtraining: test / held-out
accuracy usually rises, then falls
§ Overtraining is a kind of overfitting

Improving the Perceptron

Non-Separable Case: Deterministic Decision
Even the best linear boundary makes at least one mistake

Non-Separable Case: Probabilistic Decision

0.5 | 0.5
0.3 | 0.7

0.1 | 0.9

0.7 | 0.3
0.9 | 0.1

How to get probabilistic decisions?

§ Perceptron scoring:
§ If very positive à want probability of + going to 1
§ If very negative à want probability of + going to 0

z = w · f(x)
z = w · f(x)

z = w · f(x)

𝑧 = 0

𝑤

𝑧 > 0

𝑧 < 0

How to get probabilistic decisions?

§ Perceptron scoring:
§ If very positive à want probability of + going to 1
§ If very negative à want probability of + going to 0

§ Sigmoid function

z = w · f(x)
z = w · f(x)

z = w · f(x)

�(z) =
1

1 + e�z

=
𝑒4

𝑒4 + 1

How to get probabilistic decisions?

§ Perceptron scoring:
§ If very positive à want probability of + going to 1
§ If very negative à want probability of + going to 0

§ Sigmoid function

z = w · f(x)
z = w · f(x)

z = w · f(x)

�(z) =
1

1 + e�z

= Logistic Regression

 𝑃 𝑦 = 	+1	 𝑥	; 𝑤) = !
!"#!"⋅$(&)

 𝑃 𝑦 = −1	 𝑥	; 𝑤) = 1 − !

!"#!"⋅$(&)

A 1D Example

definitely blue definitely rednot sure

𝑃 𝑟𝑒𝑑 𝑥	; 𝑤 = 𝜙 𝑤 ⋅ 𝑓(𝑥) =
1

1 + 𝑒56⋅8(:)

𝑃 𝑟𝑒𝑑 𝑥

𝑓(𝑥)

𝑤 = 10

𝑤 = 1

A 1D Example: varying w

𝑃 𝑟𝑒𝑑 𝑥

𝑓(𝑥)

𝑃 𝑟𝑒𝑑 𝑥	; 𝑤 = 𝜙 𝑤 ⋅ 𝑓(𝑥) =
1

1 + 𝑒$%⋅'())

𝑤 = ∞

A 1D Example: varying w

𝑃 𝑟𝑒𝑑 𝑥

𝑓(𝑥)

A 1D Example: varying w

𝑃 𝑟𝑒𝑑 𝑥

𝑓(𝑥)

Best w?

§ Recall maximum likelihood estimation: Choose the w value that
maximizes the probability of the observed (training) data

Best w?

§ Recall maximum likelihood estimation: Choose the w value that
maximizes the probability of the observed (training) data

Separable Case: Deterministic Decision – Many Options

Separable Case: Probabilistic Decision – Clear Preference

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3

Multiclass Logistic Regression

Multiclass Logistic Regression

§ Recall Perceptron:
§ A weight vector for each class:

§ Score (activation) of a class y: z	=

§ Prediction highest score wins

§ How to make the scores into probabilities?

§ In general: softmax 𝑧+, . . . , 𝑧, = [-
!"

∑# /
!#
, … , -

!$

∑# /
!#
]

z1, z2, z3 ! ez1

ez1 + ez2 + ez3
,

ez2

ez1 + ez2 + ez3
,

ez3

ez1 + ez2 + ez3

original activations softmax activations

Multiclass Logistic Regression

§ Recall Perceptron:
§ A weight vector for each class:

§ Score (activation) of a class y: z	=

§ Prediction highest score wins

§ How to make the scores into probabilities?

= Multi-Class Logistic Regression

 𝑃 𝑦	 𝑥	; 𝑤) = !!"⋅$(&)

∑"(!
!"(⋅$(&)

Best w?

§ Maximum likelihood estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

P (y(i)|x(i);w) =
ewy(i) ·f(x(i))

P
y e

wy·f(x(i))

= Multi-Class Logistic Regression

Logistic Regression for 3-way classification

s
o
f
t
m
a
x…

𝑓#

𝑧#

𝑧$

𝑧%

𝑧> = 𝑤> ⋅ 𝑓

	 =2
?

𝑤?> ⋅ 𝑓?

𝑓$

𝑓%

𝑓&

Logistic Regression for 3-way classification

s
o
f
t
m
a
x…

𝑓#

𝑧#

𝑧$

𝑧%

𝑧> = 𝑤> ⋅ 𝑓

	 =2
?

𝑤?> ⋅ 𝑓?

𝑓$

𝑓%

𝑓&

𝑤""
𝑤!"

𝑤#"

𝑤$"

Logistic Regression for 3-way classification

s
o
f
t
m
a
x…

x1

x2

x3

Xd

…

𝑓#

𝑧#

𝑧$

𝑧%

𝑓$

𝑓%

𝑓&

Feature Extraction
Code

Deep Neural Network for 3-way classification

s
o
f
t
m
a
x…

x1

x2

x3

Xd

… … …

…

𝑧#

𝑧$

𝑧%

Layer 1 Layer 2 Layer L

Deep Neural Network for 3-way classification

s
o
f
t
m
a
x…

x1

x2

x3

Xd

… … …

…

𝑧#

𝑧$

𝑧%

ℎ#
(#)

Hidden unit 1 in layer 1

Deep Neural Network for 3-way classification

s
o
f
t
m
a
x…

x1

x2

x3

Xd

… … …

…

𝑧#

𝑧$

𝑧%

ℎ#
(#)

Hidden unit 1 in layer 1

ℎ!
(!) = 𝜙 𝑤!

(!) ⋅ 𝑥 = 	𝜙()
$

𝑤$%
! ⋅ 𝑥$)

𝜙 = activation function

𝑤""
(")

𝑤!"
(")

𝑤'"
(")

Deep Neural Network for 3-way classification

s
o
f
t
m
a
x…

x1

x2

x3

Xd

… … …

…

𝑧#

𝑧$

𝑧%

ℎ#
(#)

ℎ$
(#)

ℎ%
(#)

ℎ&
(#)

Deep Neural Network for 3-way classification

s
o
f
t
m
a
x…

x1

x2

x3

Xd

… … …

…

𝑧#

𝑧$

𝑧%

ℎ#
(#)

ℎ$
(#)

ℎ%
(#)

ℎ&
(#)

ℎ#
($)

Hidden unit 1 in layer 2

Deep Neural Network for 3-way classification

s
o
f
t
m
a
x…

x1

x2

x3

Xd

… … …

…

𝑧#

𝑧$

𝑧%

ℎ#
($)

Hidden unit 1 in layer 2

ℎ!
(&) = 𝜙 𝑤!

(&) ⋅ ℎ(!) = 	𝜙()
$

𝑤$%
& ⋅ ℎ$

(!))

𝜙 = activation function

ℎ#
(#)

ℎ$
(#)

ℎ%
(#)

ℎ&
(#)

𝑤""
(!)

𝑤!"
(!)

𝑤$"
(!)

Deep Neural Network for 3-way classification

s
o
f
t
m
a
x…

x1

x2

x3

Xd

… … …

…

𝑧#

𝑧$

𝑧%

ℎ#
(#)

ℎ$
(#)

ℎ%
(#)

ℎ&
(#)

ℎ#
($)

ℎ$
($)

ℎ%
($)

ℎ&
($)

Deep Neural Network for 3-way classification

s
o
f
t
m
a
x…

x1

x2

x3

Xd

… … …

…

𝜙 = activation function

• Neural network with L layers
• ℎ()): activations at layer l
• 𝑤()): weights taking activations

from layer l-1 to layer l

ℎ#
(#)

ℎ$
(#)

ℎ%
(#)

ℎ&
(#)

ℎ#
($)

ℎ$
($)

ℎ%
($)

ℎ&
($)

ℎ#
(*)

ℎ$
(*)

ℎ%
(*)

ℎ&
(*)

ℎ%
(') = 𝜙()

$

𝑤$%
(') ⋅ ℎ$

('(!))

𝑧#

𝑧$

𝑧%

Deep Neural Network for 3-way classification

s
o
f
t
m
a
x…

x1

x2

x3

Xd

… … …

…

𝜙 = activation function

ℎ#
(#)

ℎ$
(#)

ℎ%
(#)

ℎ&
(#)

ℎ#
($)

ℎ$
($)

ℎ%
($)

ℎ&
($)

ℎ#
(*)

ℎ$
(*)

ℎ%
(*)

ℎ&
(*)

ℎ(') = 𝜙(ℎ '(! 	×	𝑊 ')

𝑧#

𝑧$

𝑧%

𝑊(#) 𝑊($)

Deep Neural Network for 3-way classification

s
o
f
t
m
a
x…

x1

x2

x3

Xd

… … …

…

ℎ#
(#)

ℎ$
(#)

ℎ%
(#)

ℎ&
(#)

ℎ#
($)

ℎ$
($)

ℎ%
($)

ℎ&
($)

ℎ#
(*)

ℎ$
(*)

ℎ%
(*)

ℎ&
(*)

𝑧#

𝑧$

𝑧%

𝑊(#) 𝑊($)

• Sometimes also called Multi-Layer Perceptron (MLP) or Feed-Forward Network (FFN)

It is a component of larger Transformer Models*

Attention is all you need,
Vaswani et al, 2017

Common Activation Functions 𝜙

[source: MIT 6.S191 introtodeeplearning.com]

Deep Neural Network Training

Training the deep neural network is just like logistic regression:

 just w tends to be a much, much larger vector

How do we maximize functions?

In general, cannot always take derivative and set to 0

Use numerical optimization!

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

Hill Climbing

Recall from CSPs lecture: simple, general idea
Start wherever
Repeat: move to the best neighboring state
If no neighbors better than current, quit

What’s particularly tricky when hill-climbing for multiclass
logistic regression?
• Optimization over a continuous space
• Infinitely many neighbors!
• How to do this efficiently?

Next Time: Optimization and more Neural Networks!

Naïve Bayes vs Logistic Regression
Naïve Bayes Logistic Regression

Model Joint over all features and label:
𝑃(𝑌, 𝐹", 𝐹!, …)

Conditional:
𝑃 𝑦	 𝑓", 𝑓!, … ; 	𝑤)

Predicted class probabilities Inference in a Bayes Net:
𝑃 𝑌	 𝑓 ∝ 𝑃 𝑌 	𝑃(𝑓"|𝑌)…

Directly output label:
𝑃 𝑦 = +1	 𝑓; 	𝑤) 	= 1/(1 + 𝑒()⋅+)

Features Discrete Discrete or Continuous

Parameters Entries of probability tables 𝑃(𝑌)
and 𝑃(𝐹,|𝑌)

Weight vector 𝑤

Learning Counting occurrences of events Iterative numerical optimization

