Announcements

= Slides for Catherine Olsson’s guest lecture posted
= Please reach out to catherio@anthropic.com with any questions!

= Another guest lecture by Miles Brundage after thanksgiving
break (Dec 3)


mailto:catherio@anthropic.como

CS 188: Artificial Intelligence

Neural Networks and Optimization

[These slides were created by Dan Klein, Pieter Abbeel, Anca Dragan for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
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Recap: Deep Neural Network
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Recap: Deep Neural Network
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Recap: Deep Neural Network
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« hW: activations at layer |
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Recap: Common Activation Functions ¢

Sigmoid Function Hyperbolic Tangent Rectified Linear Unit (RelLU)
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Recap: Deep Neural Network
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Neural Network Shapes

Take d-dimensional input vector x and calculate first hidden unit vector h{1)

Shape (1,n) vector Shape (d,n) matrix

A = p(x x WD)

Shape (1,d) vector

Calculate next hidden unit vector h{!) from previous h(-1)

Shape (1,n) vector Shape (n,n) matrix

A = p(h(-D x W(l))

Shape (1,n) vector

Calculate final k-dimensional vector z (and pass to softmax to get p(y|x))

Shape (1,k) vector Shape (n,k) matrix

z = p(hL) x W lout)y

Shape (1,n) vector



Example: Sizes of neural networks

We have a neural network with the
. matrices drawn.
o X ) =
X R 1. How many layers are in the network?
w @

2. How many input dimensions d?

o W ) = 3. How many hidden neurons n?

B y

4. How many output dimensions k?



Example: Sizes of neural networks

We have a neural network with the
) = matrices drawn.

o X

1. How many layers are in the network?
w @ 1

2. How many input dimensions d?
3

o( X ) = 3. Hozw many hidden neurons n?

4. How many output dimensions k?
1




Neural Networks Properties

" Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.



Universal Function Approximation Theorem?®

Hornik theorem 1: Whenever the activation function is bounded and nonconstant, then,

for any finite measure u, standard multilayer feedforward networks can approximate any
function in LP(u) (the space of all functions on R* such that [g« |f(z)[Pdu(z) < oo) arbi-

trarily well, provided that sufficiently many hidden units are available.

Hornik theorem 2: Whenever the activation function is continuous, bounded and non-
constant, then, for arbitrary compact subsets X C R*, standard multilayer feedforward
networks can approximate any continuous function on X arbitrarily well with respect to

uniform distance, provided that sufficiently many hidden units are available.

" |n words: Given any continuous function f(x), if a 2-layer neural
network has enough hidden units, then there is a choice of

weights that allow it to closely approximate f(x).

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”

Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”

Leshno and Schocken (1991) "Multilayer Feedforward Networks with Non-Polynomial Activation
Functions Can Approximate Any Function”




Universal Function Approximation Theorem?®

Math. Control Signals Systems (1989) 2: 303-314

Mathematics of Control,
Signals, and Systems

© 1989 Springer-Verlag New York Inc.

Approximation by Superpositions of a Sigmoidal Function*

G. Cybenkot

Abstract. In this paper we that finite linear inations of com-
positions of a fixed, univariate function and a set of affine functionals can uniformly
approximate any continuous function of n real variables with support in the unit
hypercube; only mild conditions are imposed on the univariate function. Our
results settle an open question about representability in the class of single hidden
layer neural networks. In particular, we show that arbitrary decision regions can
be arbitrarily well i by conti dforward neural with
only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The
paper discusses approximation properties of other possible types of nonlinearities
that might be implemented by artificial neural networks.

Key words. Neural , Approximation, Compl

1. Introduction

A number of diverse application areas are concerned with the representation of
general functions of an n-dimensional real variable, x € R", by finite linear combina-
tions of the form

N
le ao(yjx + 6)), ()

where y; € R" and ;, § € R are fixed. (y" is the transpose of y so that y"x is the inner
product of y and x.) Here the univariate function ¢ depends heavily on the context
of the application. Our major concern is with so-called sigmoidal ¢’s:

© 1 as t— +oo,
-
° 0 as t— —oo.

Such functions arise naturally in neural network theory as the activation function
of a neural node (or unit as is becoming the preferred term) [L1], [RHM]. The main
result of this paper is a demonstration of the fact that sums of the form (1) are dense
in the space of continuous functions on the unit cube if o is any continuous sigmoidal

* Date received: October 21, 1988. Date revised: February 17, 1989. This research was supported
in part by NSF Grant DCR-8619103, ONR Contract N000-86-G-0202 and DOE Grant DE-FGO02-
85ER25001.
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ORIGINAL CONTRIBUTION

Approximation Capabilities of Multilayer
Feedforward Networks

KurT HORNIK
Technische Universitiit Wien. Vienna, Austria
(Received 30 January 1990; revised and accepred 25 October 1990)

Abstract—We show that standard multilayer feedforward networks with as few as a single hidden layer and
arbitrary bounded and nonconstant activation function are universal approximators with respect o L'() per-
formance criteria, for arbitrary finite input environment measures i, provided only that sufficiently many hidden
units are available. If the activation function is continuous.. bounded and nonconstant. then continuous mappings
can be learned uniformly over compact input sets. We also give very general conditions ensuring that networks
with sufficiently smooth activation functions are capable of arbitrarily accurate approximation to a function and

its derivatives.

Keywords—Multilayer feedforward networks, Activati

on function, Universal approximation capabilities. Input

measure, L7(s) app . Uniform

1. INTRODUCTION

The approximation capabilities of neural network ar-
chitectures have recently been investigated by many
authors, including Carroll and Dickinson (1989), Cy-
benko (1989). Funahashi (1989), Gallant and White
(1988). Hecht-Nielsen (1989), Hornik, Stinchcombe,
and White (1989, 1990), Irie and Miyake (1988),
Lapedes and Farber (1988), Stinchcombe and White
(1989, 1990). (This list is by no means complete.)

If we think of the network architecture as a rule
for computing values at / output units given values
at k input units, hence implementing a class of map-
pings from R* to R', we can ask how well arbitrary
mappings from R* to R' can be approximated by the
network, in particular, if as many hidden units as
required for internal representation and computation
may be employed.

How to measure the accuracy of approximation
depends on how we measure closeness between func-
tions, which in turn varies significantly with the spe-
cific problem to be dealt with. In many applications,
it is necessary to have the network perform sinul-
taneously well on all input samples taken from some
compact input set X in R*. In this case, closeness is

Requests for reprints should be sent to Kurt Hornik, Institut
fir Statistik und Wahrscheinlichkeitstheorie, Technische Uni-
versitat Wien, Wiedner HauptstraBe 8-100107, A-1040 Wien. Aus.
tria.

pp . Sobolev spaces, Smooth approximation.
measured by the uniform distance between functions
on X, that is,

poalf. 8) = sup [f(x) - g(x)|
X

In other applications, we think of the inputs as ran-
dom variables and are interested in the average per-
formance where the average is taken with respect to
the input environment measure y, where u(R) < =,
In this case, closeness is measured by the L(u)
tances

plfo®) - [ [ 170 ~ g duty | .

I = p < =, the most popular choice being p = 2,
corresponding to mean square error.

Of course, there are many more ways of measur-
ing closeness of functions. In particular, in many ap-
plications, it is also necessary that the derivatives of
the approximating function i d by the net-
work closely resemble those of the function to be
approximated, up to some order. This issue was first
taken up in Hornik et al. (1990). who discuss the
sources of need of smooth functional approximation
in more detail. Typical examples arise in robotics
(learning of smooth movements) and signal process-
ing (analysis of chaotic time series); for a recent ap-
plication to problems of nonparametric inference in
statistics and econometrics, see Gallant and White
(1989).

All papers

certain approximation ca-

MULTILAYER FEEDFORWARD NETWORKS
WITH NON-POLYNOMIAL ACTIVATION
FUNCTIONS CAN APPROXIMATE ANY FUNCTION

by

Moshe Leshno
Faculty of Management
Tel Aviv University
Tel Aviv, Israel 69978

and

Shimon Schocken
Leonard N. Stern School of Business
New York University
New York, NY 10003

September 1991

Center for Research on Information Systems
Information Systems Department
Leonard N. Stern School of Business
New York University

‘Working Paper Series

STERN 1S-91-26

Appeared previously as Working Paper No. 21/91 at The Israel Institute Of Business Research

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) "Multilayer Feedforward Networks with Non-Polynomial Activation

Functions Can Approximate Any Function”




Note: Important to use non-linear activation functions

* With non-linear activation ¢ for intermediate output:

y = ¢(wihy + wohs)

= ¢p(wi1p(wi1r1 + Warxe + w313) + Wod(wi2x1 + Woaks + W321x3))

* Without intermediate activations ¢:
y = p(wy(Wi1x1 + WXy + Ww31x3) + W (Wyaxy + WooXy + Wipxs))
= p((Wiwy1 + Wowq)xg + (WiWwag + wowyo)xy + (Wiwsq + Wowsy)x3)
= Qb(axl + bx, + CX3) < same as not including a hidden layer!



Deep Neural Network Training

" Training the deep neural network is just like logistic regression -
Maximize log of likelihood of the data:

max [l(w) = max ZlogP(y(i)\x(i);w)

w

" For each training example (i), maximize probability of label y(i) given input x(i)
" Parameter w tends to be a much, much larger vector

= How do we maximize w?
® Numerical optimization (i.e. hill climbing)



Hill Climbing

= Recall from CSPs lecture: simple, general idea
= Start wherever
" Repeat: move to the best neighboring state
" |f no neighbors better than current, quit

= What’s particularly tricky when hill-climbing for logistic
regression or neural networks?
* Optimization over a continuous space
* Infinitely many neighbors!
* How to do this efficiently?



Review: Derivatives and Gradients

= What is the derivative of the function ¢g(z) = z° +3?
dg
o ==
= What is the derivative of g(x) at x=57
dg
dz

20

lo—5 = 10



Review: Derivatives and Gradients

= What is the gradient of the function g(z,y) = T2y ?

= Recall: Gradient is a vector of partial derivatives with respect to
each variable

— ﬁ — p— —

oy 2xY
VQ: p—
o f 2
L Dy - R

= What is the derivative of g(x, y) at x=0.5, y=0.57

2(0.9)(0.5 0.5
VG|e=0.5,y=0.5 = ((0)5(2) ) — | 0925




1-D Optimization

" Could evaluate g(wg 4+ h) and g(wy — h)

" Then step in best direction

dg(wo)

, , , wo + h) — glwg — h
= Or, evaluate derivative: D Z}ng}) 9o )% (wo — )

= Tells which direction to step into



2-D Optimization

Source: offconvex.org



Gradient Ascent

= Perform update in uphill direction for each coordinate
= The steeper the slope (i.e. the higher the derivative) the bigger the step
for that coordinate

= E.g., consider: ¢g(wy,ws)

= Updates in vector notation:

= Updates:
dg
wl%w1+a*8w1(wlaw2) wew%-Oé*ng(w)
dg 09 ()

W2 <— W2 + (¢ *

Ows (wla UJZ) with: V,g(w) = [8(%1 (w)] = gradient



Gradient Ascent

= |dea:
= Start somewhere

= Repeat: Take a step in the gradient direction

Figure source: Mathworks



Gradient Ascent

" |dea:
= Start somewhere
= Repeat: Take a step in the gradient direction

100

90

80 |

70t

. 60F _ ‘
Not guaranteed to find . L (((((2))

global maximum: AN\

40 —

30

20

101

10 20 30 40 5 60 70 8 90 100
Figure source: Mathworks



Gradient in n dimensions




Optimization Procedure: Gradient Ascent

Tnit w
for i1ter = 1, 2,

wew+a-Vg(w)

= o learning rate --- tweaking parameter that needs to be
chosen carefully

= How? Try multiple choices
* Crude rule of thumb: update changes w about 0.1 -1 %



Learning Rate

Choice of learning rate a is a hyperparameter
Example: a=0.001 (too small)

(CL)) Starting Point

Optimum

Solution

Source: https://distill.pub/2017/momentum/



Learning Rate

Choice of step size ais a hyperparameter
Example: a=0.004 (too large)

((L)) starting Point
-/

/

Optimum

O
—

Solution

Source: https://distill.pub/2017/momentum/



Gradient Ascent with Momentum™®

= Often use momentum to improve gradient ascent convergence

Gradient Ascent: Gradient Ascent with momentum:
Init w Init w
for 1ter =1, 2, for 1ter =1, 2,
wew+a- Vg(w) zZ<f- Z+Vg(w)
WeWw+a:-Z

= One interpretation: w moves like a particle with mass
= Another: exponential moving average on gradient



Gradient Ascent with Momentum™®

Example: a=0.001 and $=0.0

41 Starting Point

Optimum

Solution

Source: https://distill.pub/2017/momentum/



Gradient Ascent with Momentum™®

Example: a=0.001 and $=0.9

41 ) Starting Point

Optimum

" Solution

Source: https://distill.pub/2017/momentum/



Batch Gradient Ascent on the Log Likelihood Objective

w

max [[(w) = max ZlogP(y(i)\x(i);w)

\ J

g(w)

" init W

= for 1ter =1, 2,

W — W+ Q * ZVlogP(y(i)]az(i);w)

Sum rule for derivatives: derivative of [a(w) + b(w)] = derivative of a(w) + derivative of b(w)



Stochastic Gradient Ascent on the Log Likelihood Objective

w

max [[(w) = max ZlogP(y“Hx“%w)

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

" Inlit w
= for 1ter =1, 2,

" pick random J

w < w + o« Viog P(yY)]z\9); w)




Mini-Batch Gradient Ascent on the Log Likelihood Objective

w

max [[(w) = max ZlogP(y“Hx“%w)

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

" Init w
= for 1ter =1, 2,
" pick random subset of trailning examples J

W — w + ok ZVlogP(y(j)]a:(j);w)
jedJ




How about computing all the derivatives?

Derivatives tables: 4 (@y=0 1= 2 [og )= -

dx u dx
d . d | du
—(x)=1 [I()g, u] =log e
dx dx a oy odx
d . du 1 . -
—lau)=a— i‘,“ =" dl
dx dx dx dx
d o du  dv  dw v .
—(Uut+tv-w)=—+——— ia":a"lnaﬂ
dx de dx dx dx dx
d . dv du d ;. S du dv
E(””:”E-H‘E T(u‘)=m‘ lT«t-lnu u‘i—
4 v . ax ! ax ax
d ( u) ldu u dv d . du
—| = |l=————— —sinu = cosu—
dx\ v vde vodx dx dx
({ 1 n—1 ([” ([ . . ({“
I_(“ )= nu 1— I—cosu = —smu{—
dx dx dx dx
d . 1 du d > du
——(u)=_— T Ttanu = SeC uT
X 2-/u dx dx dx
g ; d s du
i(l)z_é‘ﬂ ! cotu =—csc u .
dx\u " dx ax ax
: v d du
d(1)\__ n du secu = secutanu—
(l’\' “n u.le (I\' ([X ([.\‘
. _ d du
i[ﬂ g_dr. )]ﬂ cscH = —cscucotu
dx ™ "“)]_ (/u['/(“' dx dx ax

[source: http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html



How about computing all the derivatives?

But neural net f is never one of those?
=« No problem: CHAIN RULE:

L f(x) = g(h(z))

Then f'(x) =g (h(x))h (z)

Derivatives can be computed by following well-defined procedures



Automatic Differentiation

Automatic differentiation software
e.g. TensorFlow, PyTorch, Jax
Only need to program the function g(x,y,w)
Can automatically compute all derivatives w.r.t. all entries in w

This is typically done by caching info during forward computation pass
of f, and then doing a backward pass = “backpropagation”

Autodiff / Backpropagation can often be done at computational cost
comparable to the forward pass

Need to know this exists

How this is done? Details outside of scope of C5188, but we’ll
show a basic example



Backpropagation®

Gradient of g(w1, w2, ws) = wilwz +ows3 at wy; =2, W, =3, Wy =2

Think of g as a composition of many functions

= Then, we can use the chain rule to compute the gradient

g=b+c
dg . Og _
B 1, e 1
b=axw,
dg  0g Ob d0g 0g 0Ob
_— = — — = ]_ = _— e —— . —_—
da  0bOa w2 Ows  Ob Ows Lra=16
a=w,*
dg dg Oa 3
— — 3.4 —
Oow;  Oa Owy 3 - dwy =96
C=5w;
dg 0g Oc 1.5 —




Preventing Overfitting in Optimization

training
>
. (T
Early stopping: 5 et
S held-out
iterations

Weight regularization



Weight Regularization

What can go wrong when we maximize log-likelihood?
Example: logistic regression with only one datapoint: f(x)=1, y=+1

1
1+e~wW /()

max ZlogP(y(i)\a:(i);w) * Py = +llxw) =

/ log P

max log(
w 1

+ e—w) Maximizing logP takes w to infinity

w can grow very large and lead to overfitting and learning instability



Weight Regularization

What can go wrong when we maximize log-likelihood?
max Z log P(yD]z®; w)
W can grow very large
Solution: add an objective term to penalize weight magnitude

N A
max., 2 log P(yW|xW; w) — Ez sz
L J

A is a hyperparameter (typically 0.1 to 0.0001 or smaller)



Consistency vs. Simplicity

= Example: curve fitting (regression, function approximation)

J)
\

=X

= Consistency vs. simplicity
" Ockham’s razor



Consistency vs. Simplicity

= Usually algorithms prefer consistency by default (why?)

= Several ways to operationalize “simplicity”

= Reduce the hypothesis/model space
= Assume more: e.g. independence assumptions, as in naive Bayes
= Fewer features or neurons
= QOther limits on model structure

= Regularization

= Laplace Smoothing: cautious use of small counts
= Small weight vectors in neural networks (stay close to zero-mean prior)
= Hypothesis space stays big, but harder to get to the outskirts



Fun Neural Net Demo Site

Demo-site:
http://playground.tensorflow.org/



http://playground.tensorflow.org/

Neural Networks: Summary of Key ldeas

Optimize probability of label given input max [l(w) = max Zlogp(y(i)\fﬂ(i);w)

w

Continuous optimization

Gradient ascent:
Compute steepest uphill direction = gradient (= just vector of partial derivatives)
Take step in the gradient direction
Repeat (until held-out data accuracy starts to drop = “early stopping”)

Deep neural nets
Last layer = still logistic regression

Now also many more layers before this last layer
= computing the features
the features are learned rather than hand-designed
Universal function approximation theorem
If neural net is large enough
Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
But remember: need to avoid overfitting / memorizing the training data ? early stopping!

Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 188)



Next: Applications and Putting it all together!




