
Announcements

§ Slides for Catherine Olsson’s guest lecture posted
§ Please reach out to catherio@anthropic.com with any questions!

§ Another guest lecture by Miles Brundage after thanksgiving
break (Dec 3)

mailto:catherio@anthropic.como

CS 188: Artificial Intelligence

Neural Networks and Optimization

[These slides were created by Dan Klein, Pieter Abbeel, Anca Dragan for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Recap: Deep Neural Network

s
o
f
t
m
a
x…

x1

x2

x3

xd

… … …

…

𝑧!

𝑧"

𝑧#

Layer 1 Layer 2 Layer L

Recap: Deep Neural Network

s
o
f
t
m
a
x…

x1

x2

x3

xd

… …

…

𝑧!

𝑧"

𝑧$

N possible classesd pixels in image

Image Classification

Recap: Deep Neural Network

s
o
f
t
m
a
x…

x1

x2

x3

xd

… …

…

𝑧!

𝑧"

𝑧$

Dictionary:

is

very

friendly

animalN possible next wordsd words seen so far

Language Generation

Recap: Deep Neural Network

s
o
f
t
m
a
x…

x1

x2

x3

Xd

… … …

…

𝜙 = activation function

• Neural network with L layers
• ℎ(&): activations at layer l
• 𝑤(&): weights taking activations

from layer l-1 to layer l

ℎ!
(!)

ℎ"
(!)

ℎ#
(!)

ℎ(
(!)

ℎ!
(")

ℎ"
(")

ℎ#
(")

ℎ(
(")

ℎ!
())

ℎ"
())

ℎ#
())

ℎ(
())

ℎ!
(#) = 𝜙(%

%

𝑤%!
(#) ⋅ ℎ%

(#&'))

𝑧!

𝑧"

𝑧#

Recap: Common Activation Functions 𝜙

[source: MIT 6.S191 introtodeeplearning.com]

Recap: Deep Neural Network

s
o
f
t
m
a
x…

x1

x2

x3

Xd

… … …

…

ℎ!
(!)

ℎ"
(!)

ℎ#
(!)

ℎ(
(!)

ℎ!
(")

ℎ"
(")

ℎ#
(")

ℎ(
(")

ℎ!
())

ℎ"
())

ℎ#
())

ℎ(
())

ℎ(#) = 𝜙(ℎ #&' 	×	𝑊 #)

𝑧!

𝑧"

𝑧#

𝑊(!) 𝑊(")

Shape (1,n) vector

Shape (1,n) vector

Shape (n,n) matrix

Neural Network Shapes
Take d-dimensional input vector x and calculate first hidden unit vector h(1)

Calculate next hidden unit vector h(l) from previous h(l-1)

Calculate final k-dimensional vector z (and pass to softmax to get p(y|x))

ℎ(') = 𝜙(𝑥	×	𝑊 ')
Shape (1,n) vector

Shape (1,d) vector

Shape (d,n) matrix

ℎ(#) = 𝜙(ℎ(#&')	×	𝑊 #)
Shape (1,n) vector

Shape (1,n) vector

Shape (n,n) matrix

𝑧 = 𝜙(ℎ(()	×	𝑊)*+)
Shape (1,k) vector

Shape (1,n) vector

Shape (n,k) matrix

Example: Sizes of neural networks

We have a neural network with the
matrices drawn.

1. How many layers are in the network?

2. How many input dimensions d?

3. How many hidden neurons n?

4. How many output dimensions k?

𝑊(")

𝑊($%&)

ℎ(")

ℎ(")

𝑥

𝑦

Example: Sizes of neural networks

We have a neural network with the
matrices drawn.

1. How many layers are in the network?

2. How many input dimensions d?

3. How many hidden neurons n?

4. How many output dimensions k?

𝑊(")

𝑊($%&)

ℎ(")

ℎ(")

𝑥

𝑦

1

3

2

1

Neural Networks Properties

§ Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

Universal Function Approximation Theorem*

§ In words: Given any continuous function f(x), if a 2-layer neural
network has enough hidden units, then there is a choice of
weights that allow it to closely approximate f(x).

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) ”Multilayer Feedforward Networks with Non-Polynomial Activation
Functions Can Approximate Any Function”

Universal Function Approximation Theorem*

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) ”Multilayer Feedforward Networks with Non-Polynomial Activation
Functions Can Approximate Any Function”

Note: Important to use non-linear activation functions

𝑦 = 𝜙(𝑤& 𝑤&&𝑥& +𝑤'&𝑥' +𝑤(&𝑥(+𝑤' 𝑤&'𝑥& +𝑤''𝑥' +𝑤('𝑥()
= 𝜙((𝑤&𝑤&& +𝑤'𝑤&')𝑥& + (𝑤&𝑤'& +𝑤'𝑤'')𝑥' + (𝑤&𝑤(& +𝑤'𝑤(')𝑥()

 = 𝜙(𝑎𝑥& + 𝑏𝑥' + 𝑐𝑥()

• With non-linear activation 𝜙 for intermediate output:

• Without intermediate activations 𝜙:

← same as not including a hidden layer!

Deep Neural Network Training

§ Training the deep neural network is just like logistic regression -
Maximize log of likelihood of the data:

§ For each training example (i), maximize probability of label y(i) given input x(i)
§ Parameter w tends to be a much, much larger vector

§ How do we maximize w?
§ Numerical optimization (i.e. hill climbing)

Hill Climbing

§ Recall from CSPs lecture: simple, general idea
§ Start wherever
§ Repeat: move to the best neighboring state
§ If no neighbors better than current, quit

§ What’s particularly tricky when hill-climbing for logistic
regression or neural networks?
• Optimization over a continuous space
• Infinitely many neighbors!
• How to do this efficiently?

Review: Derivatives and Gradients

§ What is the derivative of the function ?

§ What is the derivative of g(x) at x=5?

Review: Derivatives and Gradients

§ What is the gradient of the function ?
§ Recall: Gradient is a vector of partial derivatives with respect to

each variable

§ What is the derivative of g(x, y) at x=0.5, y=0.5?

1-D Optimization

§ Could evaluate and
§ Then step in best direction

§ Or, evaluate derivative:

§ Tells which direction to step into

w

g(w)

w0

g(w0)

g(w0 + h) g(w0 � h)

@g(w0)

@w
= lim

h!0

g(w0 + h)� g(w0 � h)

2h

2-D Optimization

Source: offconvex.org

𝑤'
𝑤,

Gradient Ascent

§ Perform update in uphill direction for each coordinate
§ The steeper the slope (i.e. the higher the derivative) the bigger the step

for that coordinate

§ E.g., consider:

§ Updates:

g(w1, w2)

w2 w2 + ↵ ⇤ @g

@w2
(w1, w2)

w1 w1 + ↵ ⇤ @g

@w1
(w1, w2)

§ Updates in vector notation:

 with:

w w + ↵ ⇤ rwg(w)

rwg(w) =

"
@g
@w1

(w)
@g
@w2

(w)

#

= gradient

§ Idea:
§ Start somewhere
§ Repeat: Take a step in the gradient direction

Gradient Ascent

Figure source: Mathworks

§ Idea:
§ Start somewhere
§ Repeat: Take a step in the gradient direction

Gradient Ascent

Figure source: Mathworks

Not guaranteed to find
global maximum:

Gradient in n dimensions

rg =

2

6664

@g
@w1
@g
@w2

· · ·
@g
@wn

3

7775

Optimization Procedure: Gradient Ascent

▪ ⍺: learning rate --- tweaking parameter that needs to be
chosen carefully

▪ How? Try multiple choices
▪ Crude rule of thumb: update changes 𝑤 about 0.1 – 1 %

Init 𝑤
for iter = 1, 2, …

𝑤 ← 𝑤 + 𝛼 ⋅ ∇𝑔(𝑤)

Choice of learning rate ⍺ is a hyperparameter
Example: ⍺=0.001 (too small)

Learning Rate

Source: https://distill.pub/2017/momentum/

Choice of step size ⍺ is a hyperparameter
Example: ⍺=0.004 (too large)

Learning Rate

Source: https://distill.pub/2017/momentum/

Gradient Ascent with Momentum*

Init 𝑤
for iter = 1, 2, …

𝑧 ← 𝛽 ⋅ 𝑧 + ∇𝑔 𝑤
𝑤 ← 𝑤 + 𝛼 ⋅ 𝑧

▪ Often use momentum to improve gradient ascent convergence

▪ One interpretation: w moves like a particle with mass
▪ Another: exponential moving average on gradient

Init 𝑤
for iter = 1, 2, …

𝑤 ← 𝑤 + 𝛼 ⋅ ∇𝑔(𝑤)

Gradient Ascent: Gradient Ascent with momentum:

Example: ⍺=0.001 and β=0.0

Gradient Ascent with Momentum*

Source: https://distill.pub/2017/momentum/

Example: ⍺=0.001 and β=0.9

Gradient Ascent with Momentum*

Source: https://distill.pub/2017/momentum/

Batch Gradient Ascent on the Log Likelihood Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

g(w)

§ init

§ for iter = 1, 2, …

w

w w + ↵ ⇤
X

i

r logP (y(i)|x(i);w)

Sum rule for derivatives: derivative of [a(w) + b(w)] = derivative of a(w) + derivative of b(w)

Stochastic Gradient Ascent on the Log Likelihood Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

§ init

§ for iter = 1, 2, …
§ pick random j

w

w w + ↵ ⇤ r logP (y(j)|x(j);w)

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

Mini-Batch Gradient Ascent on the Log Likelihood Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

§ init

§ for iter = 1, 2, …
§ pick random subset of training examples J

w

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

w w + ↵ ⇤
X

j2J

r logP (y(j)|x(j);w)

Derivatives tables:

How about computing all the derivatives?

[source: http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html

How about computing all the derivatives?

■ But neural net f is never one of those?
■ No problem: CHAIN RULE:

If

Then

Derivatives can be computed by following well-defined procedures

Automatic differentiation software
e.g. TensorFlow, PyTorch, Jax
Only need to program the function g(x,y,w)
Can automatically compute all derivatives w.r.t. all entries in w
This is typically done by caching info during forward computation pass
of f, and then doing a backward pass = “backpropagation”
Autodiff / Backpropagation can often be done at computational cost
comparable to the forward pass

Need to know this exists
How this is done? Details outside of scope of CS188, but we’ll
show a basic example

Automatic Differentiation

§ Gradient of at w1 = 2, w2 = 3, w3 = 2
§ Think of g as a composition of many functions

§ Then, we can use the chain rule to compute the gradient

§ g = b + c

§ b = a × w2

§ a = w1
4

§ c = 5w1

Backpropagation*

w1

w2

w3

^4

×

×

+
5

w1 = 2

w2 = 3

w3 = 2

a = 16

b = 48

c = 10

g = 58

Preventing Overfitting in Optimization

Early stopping:

Weight regularization

Weight Regularization

What can go wrong when we maximize log-likelihood?
Example: logistic regression with only one datapoint: f(x)=1, y=+1

𝑤

• 𝑃 𝑦 = 	+1 𝑥;𝑤 = &
&)*!"⋅$(&)	

𝑤 can grow very large and lead to overfitting and learning instability

max
&
	log(

1
1 + 𝑒'&

) log	𝑃
Maximizing logP takes w to infinity

Weight Regularization

What can go wrong when we maximize log-likelihood?

𝑤 can grow very large

Solution: add an objective term to penalize weight magnitude

max-%
!

log 𝑃(𝑦 ! |𝑥 ! ; 𝑤) −
𝜆
2
%
%

𝑤%,

 𝜆	is a hyperparameter (typically 0.1 to 0.0001 or smaller)

Consistency vs. Simplicity

§ Example: curve fitting (regression, function approximation)

§ Consistency vs. simplicity
§ Ockham’s razor

Consistency vs. Simplicity

§ Usually algorithms prefer consistency by default (why?)

§ Several ways to operationalize “simplicity”
§ Reduce the hypothesis/model space

§ Assume more: e.g. independence assumptions, as in naïve Bayes
§ Fewer features or neurons
§ Other limits on model structure

§ Regularization
§ Laplace Smoothing: cautious use of small counts
§ Small weight vectors in neural networks (stay close to zero-mean prior)
§ Hypothesis space stays big, but harder to get to the outskirts

Fun Neural Net Demo Site

Demo-site:
http://playground.tensorflow.org/

http://playground.tensorflow.org/

Neural Networks: Summary of Key Ideas
Optimize probability of label given input

Continuous optimization
Gradient ascent:

Compute steepest uphill direction = gradient (= just vector of partial derivatives)
Take step in the gradient direction
Repeat (until held-out data accuracy starts to drop = “early stopping”)

Deep neural nets
Last layer = still logistic regression
Now also many more layers before this last layer

= computing the features
the features are learned rather than hand-designed

Universal function approximation theorem
If neural net is large enough
Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
But remember: need to avoid overfitting / memorizing the training data ? early stopping!

Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 188)

Next: Applications and Putting it all together!

