A Traffic Sensor that Issues Tickets

November 7, 2005, Cupertino, CA – SpeedInfo Inc., a private company based in Cupertino, Calif., has deployed an additional 50 DVSS-100 lightweight, solar powered radar sensors in the San Francisco Bay metro area. The DVSS-100 Speed Sensor is a fully self-contained, roadside-mounted, traffic measurement sensor. (www.speedinfo.com)

Consider a prototype model with a camera that not only measures traffic data, but also detects speeders and issues speeding tickets.

Performance Measure?

Environment?

Fully observable (partially/not observable): Deterministic (stochastic): Episodic (sequential): Static (dynamic): Discrete (continuous): Singe agent (multi agent):

Actuators? – Issue ticket Sensors? – Radar, camera

Buckets of water

Google interview question (2005): You have a 5-gallon, a 3-gallon bucket, and a faucet. How do you measure exactly 4 gallons of water?

Generally: An agent has a set of buckets B1, ..., Bn, all of different integer sizes (in gallons). The largest bucket, Bn, holds cmax gallons. The agent must fill this bucket Bn with exactly g gallons of water in it, where g < cmax, while minimizing wasted water?

Performance Measure?

Environment?

Fully observable (partially/not observable): Deterministic (stochastic): Episodic (sequential): Static (dynamic): Discrete (continuous): Singe agent (multi agent):

Actuators?

Sensors?

Formulating "Buckets of Water" as a Search Problem

Problem Definition

An agent has a set of buckets B1, ..., Bn, all of different integer sizes (in gallons). The largest bucket, Bn, holds cmax gallons. The agent must fill this bucket Bn with exactly g gallons of water in it, where g < cmax, while minimizing wasted water?

State space: For a bucket B_i , let c_i be its capacity and w_i be the amount of water currently contained within it. Then, we can describe a state by specifying w_i for all i from 1 to n.

```
Actions: Empty(B<sub>i</sub>), Fill(B<sub>i</sub>), Pour(B<sub>i</sub>, B<sub>j</sub>)
```

Initial state: w_i = 0 for all i

Goal test: w_n = g

Successor function: Informally, the successor function captures what actions are allowed in a state and what new state results from performing each action. Formally, a successor function maps from a state to a set of (action, state) pairs.

Successor(w1, ..., wn) = {(Empty(B_i), w_i' = 0 & w_k' = w_k for $k \neq i$) for all i} \cup {(Fill(B_i), w_i' = c_i & w_k' = w_k for $k \neq i$) for all i} \cup {(Pour(B_i, B_j), w_i' = max(0, w_i - (c_j - w_j)) & w_i' = min(c_j, w_i + w_j) & w_k' = w_k for $k \neq I$, j) for all i, j}

Cost function: Informally, we can assign cost only to filling buckets from the tap. Formally, we have:

Given state S characterized by $\{w_1, ..., w_n\}$, Cost(Fill(B_i)) = $c_i - w_i$ Cost(Empty(B_i)) = 0 Cost(Pour(B_i, B_j)) = 0 The path cost is the sum of the costs of all actions in the path.