# Markov Decision Processes

CS 188: Section Handout

## Defining a Markov Decision Process (MDP)

• State Space:  $\{S_0, S_1, S_2, ...\}$ 

• Actions:  $\{A_0, A_1, ...\}$ 

• Initial State:  $S_0$ 

• Transition Model: T(s, a, s'), the probability of going from s to s' with action a.

• Reward Function: R(s), the reward for being in state s.<sup>1</sup>

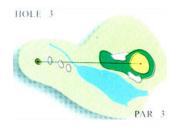
• Discount Factor:  $\gamma$ , the discount for rewards: a reward r in t steps is worth  $r\gamma^t$  now.  $0 < \gamma \le 1$ .

A solution to an MDP is called a **policy**, which is a function  $\pi(s)$  that maps from states to actions. For a particular policy  $\pi$ , every state has exactly one chosen action.

### Which of the following are MDPs?

**Exercise:** For each of the following tasks/games, describe an MDP formulation or state why it is not amenable to the MDP framework.

- Blackjack (21) with no betting
- Rock, Paper, Scissors
- Person trapped in a container ship who can yell for help on sunny days
- Tightrope-walking robot










<sup>&</sup>lt;sup>1</sup>Sometimes rewards have different structures, such as R(s, a, s'): the reward for moving from s to s' via action a.



# A Very Simple Example: Golf

• State Space:  $\{Tee, Fairway, Sand, Green\}$ 

 $\bullet \ \ Actions: \ \{Conservative, Power \ shot\}$ 

Initial State: Tee

• Transition Model: T(s, a, s'), the probability of going from s to s' with action a.

| s       | a            | s'      | T(s, a, s') |
|---------|--------------|---------|-------------|
| Tee     | Conservative | Fairway | 0.9         |
| Tee     | Conservative | Sand    | 0.1         |
| Tee     | Power shot   | Green   | 0.5         |
| Tee     | Power shot   | Sand    | 0.5         |
| Fairway | Conservative | Green   | 0.8         |
| Fairway | Conservative | Sand    | 0.2         |
| Sand    | Conservative | Green   | 1.0         |

• Reward Function:

| s       | R(s) |
|---------|------|
| Tee     | -1   |
| Fairway | -1   |
| Sand    | -2   |
| Green   | 3    |

**Question:** For the *Conservative* policy, what is the utility of being at the *Tee*? What about the *Power shot* policy?

#### Value iteration: an exact solution to MDPs

The quick and dirty story of value iteration:

- Solves the Bellman equation:  $U(s) = R(s) + \gamma \max_a \sum_{s'} T(s, a, s') U(s')$
- Starts with  $\hat{U}(s) = 0$  for all s. Iterates through each state many times, updating  $\hat{U}(s)$ .
- Iteration always converges to the correct answer given infinite time.

**Exercise:** Compute the value iteration updates for golf.