Co 188 [ntroduction to
Fall 2008 Artificial Inteuigence Final Exam

INSTRUCTIONS

e You have 180 minutes. 100 points total. Don’t panic!
e The exam is closed book, closed notes except a two-page crib sheet, non-programmable calculators only.

e Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation. All short answer sections can be successfully answered in a few sentences at most.

e Question 0: Fill out the following grid and write your name, SID, login, and GSI at the top of
each subsequent page. (-1 points if done incorrectly!)
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First Name

SID
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All the work on this
exam 1S My own.
(please sign)
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1. (17 points.) Search: A* Variants
Queuing variants: Consider the following variants of the A* tree search algorithm. In all cases, g is the

cumulative path cost of a node n, h is a lower bound on the shortest path to a goal state, and n’ is the parent
of n. Assume all costs are non-negative.

(i) Standard A*
(ii) A*, but we apply the goal test before enqueuing nodes rather than after dequeuing

(iv) A*, but prioritize n by h(n) only (ignoring g(n))
)+

h(n')

)

)

(iii) A*, but prioritize n by g(n) only (ignoring h(n))
)

)

(vi) A*, but prioritize n by g(n') + h(n)

(
(v) A*, but prioritize n by g(n
(

(a) (3 points) Which of the above variants are complete, assuming all heuristics are admissible?
(b) (3 points) Which of the above variants are optimal, again assuming all heuristics are admissible?

Upper Bounds: A* exploits lower bounds & on the true completion cost A*. Suppose now that we also have
an upper bound k(n) on the best completion cost (i.e. Vn,k(n) > h*(n)). We will now consider A* variants
which still use g 4+ h as the queue priority, but save some work by using k£ as well. Consider the point at which
you are inserting a node n into the queue (fringe).

(c) (8 points) Assume you are required to preserve optimality. In response to n’s insertion, can you ever
delete any nodes m currently on the queue? If yes, state a general condition under which nodes m can be
discarded, if not, state why not. Your answer should involve various path quantities (g, h, k) for both the newly
inserted node n and other nodes m on the queue.

In a satisficing search, you are only required to find some solution of cost less than some threshold ¢ (if one
exists). You need not be optimal.
(d) (3 points) In the satisficing case, in response to n’s insertion, can you ever delete any nodes m currently

on the queue? If yes, state a general condition, if not, state why not. Your answer should involve various path
quantities (g, h, k) for both the newly inserted node n and other nodes m on the queue.



e-Admissible Heuristics: Suppose that we have a heuristic function which is not admissible, but e-admissible,
meaning for some known € > 0,
h(n) < h*(n) +e for all nodes n

where h*(n) is the optimal completion cost. In other words, h is never more than e from being optimal.

(e) (1 point) Is using A* with an e-admissible heuristic complete? Briefly justify.

(f) (2 points) Assuming we utilize an € admissible heuristic in standard A* search, how much worse than the
optimal solution can we get? L.e., if ¢* is the optimal cost for a search problem, what is the worst cost solution
an € admissible heuristic would yield? Justify your answer.

(g) (2 points) Suggest a modification to the A* algorithm which will be guaranteed to yield an optimal
solution using an e-admissible heuristic with fixed, known e. Justify your answer.
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2. (13 points.) CSPs: A Greater (or Lesser) Chain

Consider the general less-than chain CSP below. Each of the N variables X; has the domain {1...M}. The
constraints between adjacent variables X; and X1 require that X; < X; 1.

< < < <

DO

For now, assume N = M = 5.

(a) (1 point) How many solutions does the CSP have?

(b) (1 point) What will the domain of X; be after enforcing the consistency of only the arc X7 — Xo?

(c) (2 points) What will the domain of X; be after enforcing the consistency of only the arcs X3 — X3 then
X1 — Xg?

(d) (2 points) What will the domain of X; be after fully enforcing arc consistency?



Now consider the general case for arbitrary N and M.

(e) (3 points) What is the minimum number of arcs (big-O is ok) which must be processed by AC-3 (the
algorithm which enforces arc consistency) on this graph before arc consistency is established?

(f) (4 points) Imagine you wish to construct a similar family of CSPs which forces one of the two following
types of solutions: either all values must be ascending or all values must be descending, from left to right. For
example, if M = N = 3, there would be exactly two solutions: {1,2,3} and {3,2,1}. Explain how to formulate
this variant. Your answer should include a constraint graph and precise statements of variables and constraints.
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3. (18 points.) RL and MDPs: Two-Armed Bandit

Imagine you have two slot machine levers. You are playing a game where at each time step, you must pull
exactly one lever. Lever A always pays a reward of 6. Lever B pays a reward of either 10 or 0. If B is a lucky
lever (L=/), it pays 10 with probability 4/5. If it is an unlucky one (L=-¢), it pays 10 with probability 1/5.
B is equally likely to lucky or unlucky a priori. Assume v =1 (which is ok for finite games, not a trick).

(a) (2 points) If you can only pull a lever once, what is the MEU?

(b) (1 point) Which action(s) (A or B or both) give that MEU?

If you play this game multiple times, it becomes more difficult to figure out what actions to take. The game is
formally a POMDP, but we can turn it into an MDP in which the states encode our past outcomes from lever
B. In particular, a state will be of the form (m,n), where m is the number of times we pulled B and got 10
and n is the number of times we pulled B and got 0. We begin in state (0,0). If we then pull lever B and get
the outcome 10 we will go to state (1,0), while getting the 0 outcome puts us in state (0,1). Your actions are
{A, B}, and the rewards are as described above.

(c) (3 points) If you will play exactly two rounds, draw the computation tree which represents the possible
outcomes of the MDP. Clearly indicate which nodes are of which type (min, max, expectation, etc).



Note that if you pull lever B, the resulting payoff should change your beliefs about what kind of lever B is,
and therefore what future payoffs from B might be. For example, if you get the 10 reward, your belief that B
is lucky should increase.

(d) (2 points) If you are in state (0, 1) and select action B, list the states you might land in and the probability
you will land in them.

(e) (2 points) If you are in state (1,0) and select action B, list the states you might land in and the probability
you will land in them.

(f) (3 points) On the computation tree in (c¢), clearly mark the probabilities on each branch of any chance
nodes.

(g) (3 points) Again in this two-round setting, what is the MEU from the state state, and which first action(s)
(A or B or both) give it?

(h) (2 points) If the number of plays N is large enough, the optimal first action will eventually be to pull
lever B. Explain why this makes sense using concepts from reinforcement learning.
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4. (15 points.) Bayes Nets: Snuffles

Assume there are two types of conditions: (S)inus congestion and (F)lu. Sinus congestion is is caused by
(A)llergy or the flu.

There are three observed symptoms for these conditions: (H)eadache, (R)unny nose, and fe(V)er. Runny nose
and headaches are directly caused by sinus congestion (only), while fever comes from having the flu (only). For
example, allergies only cause runny noses indirectly. Assume each variable is boolean.

0 -0 G0 O
@ %)) @ (11) (111) @ g\? @

(a) (2 points) Consider the four Bayes Nets shown. Circle the one which models the domain (as described
above) best.

(b) (3 points) For each network, if it models the domain exactly as above, write correct. If it has too many
conditional independence properties, write extra independence and state one that it has but should not have.
If it has too few conditional independence properties, write missing independence and state one that it should

have but does not have.
(i)
(i)

(c) (3 points) Assume we wanted to remove the Sinus congestion (S) node. Draw the minimal Bayes Net
over the remaining variables which can encode the original model’s marginal distribution over the remaining
variables.
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(d) (2 points) In the original network you chose, which query is more efficient to compute using variable
elimination: P(F|r,v,h,a,s) or P(F)? Briefly justify.

Assume the following samples were drawn from prior sampling:
a,s,r, _‘h7 _‘f7 v
a,s,—rh, f,—v
a,—s,r,—h, - f, v
a,—s,—r, h, f,—v
a,s,—r,h,~f, —v

(e) (1 point) Give the sample estimate of P(f) or state why it cannot be computed.

(f) (1 point) Give the sample estimate of P(f|h) or state why it cannot be computed.

(g) (1 point) Give the sample estimate of P(f|v) or state why it cannot be computed.

(h) (2 points) For rejection sampling in general (not necessarily on these samples), which query will require
more samples to compute to a certain degree of accuracy, P(f|h) or P(f|h,a)? Justify your answer in general
terms.
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5. (19 points.) HMMs: Tracking a Jabberwock

You have been put in charge of a Jabberwock for your friend Lewis. The Jabberwock is kept in a large tugley
wood which is conveniently divided into an N x N grid. It wanders freely around the N? possible cells. At each
time step t = 1,2,3, ..., the Jabberwock is in some cell X; € {1,..., N}?, and it moves to cell X;,; randomly
as follows: with probability 1 — ¢, it chooses one of the (up to 4) valid neighboring cells uniformly at random;
with probability e, it uses its magical powers to teleport to a random cell uniformly at random among the N2
possibilities (it might teleport to the same cell). Suppose € = %, N =10 and that the Jabberwock always starts
in X1 = (17 1)

(a) (2 points) Compute the probability that the Jabberwock will be in Xo = (2,1) at time step 2. What
about P(Xy = (4,4))?

At each time step ¢, you don’t see X; but see E;, which is the row that the Jabberwock is in; that is, if
X: = (r,c), then E; = r. You still know that X; = (1,1).

(b) (4 points) Suppose we see that E; = 1, E5 = 2, E3 = 10. Fill in the following table with the distribution
over X; after each time step, taking into consideration the evidence. Your answer should be concise. Hint: you
should not need to do any heavy calculations.

t P(Xt, 61:,5_1) P(Xt; el:t)
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You are a bit unsatisfied that you can’t pinpoint the Jabberwock exactly. But then you remembered Lewis
told you that the Jabberwock teleports only because it is frumious on that time step, and it becomes frumious
independently of anything else. Let us introduce a variable F; € {0,1} to denote whether it will teleport at
time t. We want to to add these frumious variables to the HMM.

Consider the two candidates:

(A) (B)

X LX3 [ Xy | X1 L X5 X,
Xi LB | X, | X1 LE) | X,
X1 LFE Xy | X1 LE|X,
X1 LE | Xo | X1 LE| X,
X1 LF | Xo | X1 LE| X,
Es L Fy| X5 | BEs L Fy| X3
) EiLFE|X, | By LF|X,

Elj_F2|E2 ElLFQ‘EQ

@) =)
By x)
& & ® =)
(A)

=)

(

(c) (8 points) For each model, circle the conditional independence assumptions above which are true in that
model.

(d) (2 points) Which Bayes net is more appropriate for the problem domain here, (A) or (B)? Justify your
answer.

For the following questions, your answers should be fully general for models of the structure shown above, not
specific to the teleporting Jabberwock. For full credit, you should also simplify as much as possible (including
pulling constants outside of sums, etc.).

(e) (2 points) For (A), express P(X¢i1, €1:441, f1:t+1) in terms of P(X;, e1.t, f1.+) and the CPTs used to define
the network. Assume the F and F' nodes are all observed.

(f) (2 points) For (B), express P(Xti1,€1:441, f1:4+1) in terms of P(Xy, e1.+, f1.+) and the CPTs used to define
the network. Assume the E and F' nodes are all observed.
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Suppose that we don’t actually observe the Fis.

(g) (2 points) For (A), express P(X¢41,€1.441) in terms of P(X;, e1.;) and the CPTs used to define the
network.

(h) (2 points) For (B), express P(X¢t1,€1:441) in terms of P(X;, eq.:) and the CPTs used to define the
network.
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6. (18 points.) Classification and VPI: Cat Cravings

Consider the following Naive-Bayes model for diagnosing whether your cat is (H)ungry. Signs of hunger include
that the cat is (T)hin, (M)eowing, or (W)eak.

H P(H) h t 0.6 h m 0.6 h w 0.5
h 0.5 h | -t 0.4 h | -m 04 h | —-w 0.5
—h 0.5 —h t 0.4 —h m 0.4 —h w 0.0
=h | =t 0.6 —-h | —-m 0.6 =h | —-w 1.0

(a) (3 points) If your cat is thin and meowing, but not weak, what is the probability that he is hungry?

(b) (2 points) Which of the following smoothing options might have been applied to produce the CPTs above
from training data? Circle the best answer:

(i) Laplace smoothing only might have been applied

)
(ii) Linear interpolation only might have been applied
(iii) Neither could have been applied

)

(iv) Either might have been applied

(c) (2 points) Assume that no smoothing has been applied (so these are the maximum likelihood estimates).
Compute the linear interpolation smoothed estimate of Ppin(w|h) using a = 0.5.

(d) (2 points) In a single word, state why smoothing is necessary.

Imagine you cannot tell whether your cat is weak or not.

(e) (2 points) Is it correct to simply skip over any unobserved evidence variables when classifying in a Naive
Bayes model? That is, will you get the same answer as if you had marginalized out the missing nodes? Briefly
justify why or why not.
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Now return to the original probabilities, reprinted here:

H]| T | P(T|H) H | M| P(M[H) H | W [ P(W[H)

H | P(H) h| ¢ 0.6 h| m 0.6 h| w 0.5
h| 05 h| -t 0.4 h | -m 0.4 h | —w 0.5
-h | 05 ~h | t 0.4 -h | m 0.4 ~h | w 0.0
—h | -t 0.6 -h | -m 0.6 ~h | —w 1.0

You can decide whether or not to give your cat a mega-feast (F) to counteract his (possible) hunger. Your
resulting utilities are below:

H| F|UHF)
h| f 0
h| —f -100

~h | ~f 10

(f) (2 points) Draw the decision diagram corresponding to this decision problem.

If you do not know W, but wish to determine whether your cat is weak, you can apply the weak-o-meter test,
which reveals the value of W.

(g) (3 points) In terms of high-level quantities (MEUs, EUs, conditional probabilities, or similar) and variables,
give an expression for the maximum utility you should be willing pay to apply the weak-o-meter, assuming the
cat is again thin and meowing?

(h) (2 point) What is the maximum utility you should be willing to pay, as a specific real number?



