CS 188: Artificial Intelligence Spring 2011

Final Review
5/2/2011

Pieter Abbeel - UC Berkeley

Probabilistic Reasoning

- Probability
- Random Variables
- Joint and Marginal Distributions
- Conditional Distribution
- Inference by Enumeration
- Product Rule, Chain Rule, Bayes' Rule
- Independence
- Distributions over LARGE Numbers of Random Variables \rightarrow Bayesian networks
- Representation
- Inference
- Exact: Enumeration, Variable Elimination
- Approximate: Sampling
- Learning
- Maximum likelihood parameter estimation
- Laplace smoothing
- Linear interpolation

Probability recap

- Conditional probability $\quad P(x \mid y)=\frac{P(x, y)}{P(y)}$
- Product rule

$$
P(x, y)=P(x \mid y) P(y)
$$

$$
a
$$

- Chain rule $P\left(X_{1}, X_{2}, \ldots X_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right)$.. $\&-$
- X, Y independent iff: $\forall x, y: P(x, y)=P(x) P(y)$ equivalently, iff: $\forall x, y: P(x \mid y)=P(x)$
equivalently, iff:
$\forall x, y: P(y \mid x)=P(y)$

- X and Y are conditionally independent given Z iff:

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z) \quad \curvearrowright
$$

equivalently, iff: $\forall x, y, z: P(x \mid y, z)=P(x \mid z)$
a
equivalently, iff: $\forall x, y, z: P(y \mid x, z)=P(y \mid z)$
a 3

Inference by Enumeration

- $\mathrm{P}($ sun)?
$0.1)^{-}+0.10+0.10+0.30$
- P (sun | winter)?

P (unite) 0.1 10.01
- P (sun | winter, hot)?

Chain Rule \rightarrow Bayes net

- Chain rule: can always write any joint distribution as an incremental product of conditional distributions
$\Longrightarrow P\left(x_{1}, x_{2}, x_{3}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right)$
$\longrightarrow P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i} P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right) \quad \&$
- Bayes nets: make conditional independence assumptions of the 5 M form:

$$
P\left(x_{i} \mid x_{1} \cdots x_{i-1}\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

giving us:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

Example: Alarm Network

Size of a Bayes' Net for $P\left(X_{1}, X_{2}, \ldots X_{n}\right)$

- How big is a joint distribution over N Boolean variables? 2^{N}
- Size of representation if we use the chain rule 2^{N}
- How big is an N -node net if nodes have up to k parents?

- Both give you the power to calculate
- BNs:
— Huge space savings!
\rightarrow Easier to elicit local CPTs
\longrightarrow - Faster to answer queries

Bayes Nets: Assumptions

- Assumptions we are required to make to define the Bayes net when given the graph:

$$
P\left(x_{i} \mid x_{1} \cdots x_{i-1}\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

\qquad

- Given a Bayes net graph additional conditional independences can be read off directly from the graph
- Question: Are two nodes necessarily independent given certain evidence?
- If no, can prove with a counter example
\rightarrow I.e., pick a set of CPT's, and show that the independence assumption is violated by the resulting distribution
- If yes, can prove with
- Algebra (tedious) r
- D-separation (analyzes graph)

$\xrightarrow[D-S e p a r a t i o n ~]{0 \rightarrow 0-0}$

$X \Perp Y 12$

- Question: Are X and Y conditionally independent given evidence vars $\{Z\}$?
- Yes, if X and Y "separated" by Z
- Consider all (undirected) paths from X to Y
- No active paths = independence!
- A path is active if each triple is active:
- Causal chain $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C}$ where B is unobserved (either direction)
- Common cause $A \leftarrow B \rightarrow C$ where B is unobserved
- Common effect (aka v-structure)
$A \rightarrow B \leftarrow C$ where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment

1

D-Separation

- Given query X_{i} h $X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}$
- Shade all evidence nodes
- For all (undirected!) paths between and
- Check whether path is active
- If active return $X_{i} \not \underline{\mid} X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}$
-(If reaching this point all paths have been checked and shown inactive)
- Return $\underbrace{}_{i} \Perp X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}$

All Conditional Independences

- Given a Bayes net structure, can run dseparation to build a complete list of conditional independences that are necessarily true of the form

$$
\begin{equation*}
X_{i} \Perp X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\} \tag{6}
\end{equation*}
$$

- This list determines the set of probability distributions that can be represented by Bayes' nets with this graph structure

Topology Limits Distributions

- Given some graph
 joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases

Adding arcs increases
the set of distributions, but has several costs

- Full conditioning can encode any distribution topology G, only certa

Bayes Nets Status

Representation

- Inference
- Learning Bayes Nets from Data

Inference by Enumeration

- Given unlimited time, inference in BNs is easy
- Recipe:
- State the marginal probabilities you need
- Figure out ALL the atomic probabilities you need
- Calculate and combine them
- Example:

15

Example: Enumeration

- In this simple method, we only need the BN to synthesize the joint entries

$$
\begin{aligned}
& P(+b,+j,+m)= \\
& P(+b) P(+e) P(+a \mid+b,+e) P(+j \mid+a) P(+m \mid+a)+ \\
& P(+b) P(+e) P(-a \mid+b,+e) P(+j \mid-a) P(+m \mid-a)+ \\
& P(+b) P(-e) P(+a \mid+b,-e) P(+j \mid+a) P(+m \mid+a)+ \\
& P(+b) P(-e) P(-a \mid+b,-e) P(+j \mid-a) P(+m \mid-a)
\end{aligned}
$$

Variable Elimination

- Why is inference by enumeration so slow?
- You join up the whole joint distribution before you sum out the hidden variables
- You end up repeating a lot of work!
- Idea: interleave joining and marginalizing!
- Called "Variable Elimination"
- Still NP-hard, but usually much faster than inference by enumeration

Variable Elimination Outline

- Track objects called factors
- Initial factors are local CRTs (one per node)

- Any known values are selected
- Egg. if we know $L=+\ell$, the initial factors are

$P(R)$	$P(T \mid R)$					
$+r$	0.1					
$-r$	0.9	\quad	$+r$	$+t$	0.8	
:---:	:---:	:---:				
$+r$	$-t$	0.2				
$-r$	$+t$	0.1				
$-r$	$-t$	0.9	\quad	$+t$	+1	0.3
:---:	:---:	:---:				
$-t$	+1	0.1				

- VE: Alternately join factors and eliminate variables

Variable Elimination Example (T)

$P(T)$

+t	0.17
-t	0.83

Example

$P(B \mid j, m)$	$\propto P(B, j, m)$			
$P(B)$	$P(E)$	$P(A \mid B, E)$	$P(\underline{j} \mid A)$	$P(m \mid A)$

Choose A

$$
P(B) \quad P(E) \quad P(j, m \mid B, E)
$$

Example

$P(B) \quad P(E) \quad P(j, m \mid B, E)$

Choose E

$P(B) \quad P(j, m \mid B)$

Finish with B

General Variable Elimination

- Query: $P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)$
- Start with initial factors:
- Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
- Pick a hidden variable H
- Join all factors mentioning H
- Eliminate (sum out) H
- Join all remaining factors and normalize

Approximate Inference: Sampling

- Basic idea:
- Draw $\underset{\sim}{N}$ samples from a sampling distribution S
- Compute an approximate posterior probability
- Show this converges to the true probability P
- Why? Faster than computing the exact answer
- Prior sampling:
- Sample ALL variables in topological order as this can be done quickly
- Rejection sampling for query $P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right) \&$
- = like prior sampling, but reject when a variable is sampled inconsistent with the query, in this case when a variable E_{i} is sampled differently from e_{i}
- Likelihood weighting for query $P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)$
- = like prior sampling but variables E_{i} are not sampled, when it's their turn, they get set to e_{i}, and the sample gets weighted by $\mathrm{P}\left(\mathrm{e}_{\mathrm{i}} \mid\right.$ value of parents $\left(\mathrm{e}_{\mathrm{i}}\right)$ in current sample)
\leadsto Gibbs sampling: repeatedly samples each non-evidence variable conditioned on all other variables \rightarrow can incorporate downstream evidence

Example

- We'll get a bunch of samples from the BN:
$+\mathrm{C},-\mathrm{S},+\mathrm{r},+\mathrm{W}$
$+\mathrm{C},+\mathrm{S},+\mathrm{r},+\mathrm{W}$
$-\mathrm{C},+\mathrm{S},+\mathrm{r},-\mathrm{w}$
$+\mathrm{C},-\mathrm{s},+\mathrm{r},+\mathrm{W}$
-C, -s, -r, +W

- If we want to know $\mathrm{P}(\mathrm{W})$
- We have counts <+w:4, -w:1>
- Normalize to get $P(W)=<+w: 0.8,-w: 0.2>$
- This will get closer to the true distribution with more samples
- Can estimate anything else, too
- What about $P(C \mid+w)$? $P(C \mid+r,+w)$? $P(C \mid-r,-w)$?
- Fast: can use fewer sam(blestyf less time

Likelihood Weighting

Likelihood Weighting

- Sampling distribution if z sampled and e fixed evidence

$$
S_{W S}(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{l} P\left(z_{i} \mid \operatorname{Parents}\left(Z_{i}\right)\right)
$$

- Now, samples have weights

$$
w(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{m} P\left(e_{i} \mid \operatorname{Parents}\left(E_{i}\right)\right)
$$

- Together, weighted sampling distribution is consistent

$$
\begin{aligned}
S_{\mathrm{Ws}}(z, e) \cdot w(z, e) & =\prod_{i=1}^{l} P\left(z_{i} \mid \operatorname{Parents}\left(z_{i}\right)\right) \prod_{i=1}^{m} P\left(e_{i} \mid \operatorname{Parents}\left(e_{i}\right)\right) \\
& =P(\mathrm{z}, \mathrm{e})
\end{aligned}
$$

$+x,+y 1+z,+w p\left(x \mid+y_{1}+z,+w\right) \rightarrow-x$
 \rightarrow Resample Xfron
 Gibbs Sampling

- Idea: instead of sampling from scratch, ckeate samples that are each like the last one.

- Procedure: resample one variable at a time, conditioned on all the rest, but keep evidence fixed.
$-x,+y,+2,+\infty$
$\frac{P(-x,+y, z,+w)}{P(-x,+y,+w)}$
- Properties: Now samples are not independent (in fact $?$ they're nearly identical), but sample averages are still
v sa consistent estimators! for $P\left(Z(-x,+y,+w) \sim-2 \sum_{2} P(-x) \|_{t+y}\right)$
- What's the point: both upstream and downstream variables condition on evidence.
$-x,+y,-2,+w$

$$
\begin{equation*}
\text { Rescale } X \text { flo } P(X \mid+y,-2,+w) \sim+x \tag{29}
\end{equation*}
$$

Markov Models

- A Markov model is a chain-structured BN
- Each node is identically distributed (stationarity)
- Value of X at a given time is called the state
- As a BN:

$$
P\left(X_{1}\right) \quad P\left(X \mid X_{-1}\right)
$$

- The chain is just a (growing) BN
- We can always use generic BN reasoning on it if we truncate the chain at a fixed length
- Stationary distributions
- For most chains, the distribution we end up in is independent of the initial distribution
- Called the stationary distribution of the chain

$$
P_{\infty} P_{\infty}\left(x_{\infty}\right)=\sum_{x} \sum^{p\left(x_{\infty} \mid x\right), p(x)}
$$

- Example applications: Web link analysis (Page Rank) and Gibbs Sampling

Hidden Markov Models

- Underlying Markov chain over states S
- You observe outputs (effects) at each time step

- Speech recognition HMMs:
- X_{i} : specific positions in specific words; E_{i} : acoustic signals
- Machine translation HMMs:
- X_{i} : translation options; E_{i} : Observations are words
- Robot tracking:
- X_{i} : positions on a map; E_{i} : range readings

Online Belief Updates

- Every time step, we start with current $\mathrm{P}(\mathrm{X} \mid$ evidence $)$
- We update for time:

$$
L\left(x_{t} \mid e_{1: t-1}\right)=\sum_{x_{t-1}} \underbrace{P\left(x_{t-1} \mid e_{1: t-1}\right)} \cdot \underbrace{P\left(x_{t} \mid x_{t-1}\right)}
$$

- We update for evidence:

$$
L^{P\left(x_{t} \mid e_{1: t}\right)} \propto_{X} P\left(x_{t} \mid e_{1: t-1}\right) \cdot \underbrace{P\left(e_{t} \mid x_{t}\right)}
$$

- The forward algorithm does both at once (and doesn't normalize)

$$
G \text { = varsable eliminatwinder } X_{1} \ldots X_{u}
$$

Particle Filtering

- = likelihood weighting + resampling at each time slice
- Why: sometimes $|X|$ is too big to use exact inference
- Particle is just new name for sample

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Particle Filtering

- Elapse time:
- Each particle is moved by sampling its next position from the transition model

$$
x^{\prime}=\operatorname{sample}\left(P\left(X^{\prime} \mid x\right)\right)
$$

- Observe:
- We don't sample the observation, we fix it and downweight our samples based on the evidence
- This is like likelihood weighting, so we multiply
- Resample:

$$
\text { with Pl } e_{t}\left(y^{\prime}\right)
$$

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from t-1

- Discrete valued dynamic Bayes nets are also HMMs

Bayes Nets Status

Representation

Inference

- Learning Bayes Nets from Data

- This is the estimate that maximizes the likelihood of the data
- Laplace smoothing $\xrightarrow{k^{L(x, \theta)}}=\underbrace{\prod_{i} P_{\theta}\left(x_{i}\right)} \quad \theta \quad \theta \cdot(1-\theta) \cdot(1-\theta)$
$\begin{aligned} & \text { - Pretend saw every outcome k extra times }\end{aligned} P_{L A P, k}(x)=\frac{c(x)+k a}{N+k|X|}$
- Smooth each condition independently: $P_{L A P, k}(x \mid y)=\frac{c(x, y)+k}{c(y)+k|X|}$

Bayes Nets Status

Representation

Inference

Learning Bayes Nets from Data

Classification: Feature Vectors

$x \quad f(x)$

Hello,
Do you want free printr
cartriges? Why pay more
when you can get them
ABSOLUTELY FREE! Just

$\left(\begin{array}{lll}\# \text { free } & : & 2 \\ \text { YOUR_NAME } & : & 0 \\ \text { MISSPELLED } & : & 2 \\ \text { FROM_FRIEND } & : & 0 \\ \cdots & & \end{array}\right)$

SPAM
or
+

Classification overview

- Naïve Bayes:
- Builds a model training data
- Gives prediction probabilities
- Strong assumptions about feature independence
- One pass through data (counting)
- Perceptron:
- Makes less assumptions about data
- Mistake-driven learning
- Multiple passes through data (prediction)
- Often more accurate
- MIRA:
- Like perceptron, but adaptive scaling of size of update
- SVM:
- Properties similar to perceptron
- Convex optimization formulation
- Nearest-Neighbor:
- Non-parametric: more expressive with more training data
- Kernels
- Efficient way to make linear learning architectures into nonlinear ones

Bayes Nets for Classification

- One method of classification:
- Use a probabilistic mode!!
- Features are observed random variables F_{i}
- Y is the query variable
- Use probabilistic inference to compute most likely Y

$$
y=\operatorname{argmax}_{y} P\left(y \mid f_{1} \ldots f_{n}\right)
$$

- You already know how to do this inference

General Naïve Bayes

- A general naive Bayes model:
$|\mathrm{Y}| \times|\mathrm{F}|^{\text {n }}$
parameters
$P\left(\mathrm{Y}, \mathrm{F}_{1} \ldots \mathrm{~F}_{n}\right)=$

$|\mathrm{Y}|$ parameters

- We only specify how each feature depends on the class
- Total number of parameters is linear in n
- Our running example: digits

Bag-of-Words Naïve Bayes

- Generative model

$$
P\left(Y, W_{1} \ldots W_{n}\right)=P(Y) \prod_{i} \underbrace{P\left(W_{i} \mid Y\right)} \quad \begin{aligned}
& \begin{array}{l}
\text { i, not th word in } \\
\text { the dictionary! }
\end{array}
\end{aligned}
$$

- Bag-of-words
- Each position is identically distributed
- All positions share the same conditional prods $\mathrm{P}(\mathrm{W} \mid \mathrm{C})$
- \rightarrow When learning the parameters, data is shared over all positions in the document (rather than separately learning a distribution for each position in the document)
- Our running example: spam vs. ham

Linear Classifier

- Binary linear classifier:

$$
y= \begin{cases} \pm+1 & \text { if } \\ -1 & \text { if } \frac{w \cdot f(x) \geq 0}{w \cdot f(x)<0}\end{cases}
$$

- Multiclass linear classifier:
- A weight vector for each class:

$$
w_{y}
$$

- Score (activation) of a class y :

$$
w_{y} \cdot f(x)
$$

- Prediction highest score wins

$$
y=\arg \max _{y} w_{y} \cdot f(x)
$$

Perceptron = algorithm to learn weights w

- Start with zero weights
- Pick up training instances one by one
- Classify with current weights

$$
\begin{aligned}
\longrightarrow y & =\arg \max _{y} \underbrace{}_{y} \cdot f(x) \\
& =\arg \max _{y} \sum_{i} w_{y, i} \cdot f_{i}(x)
\end{aligned}
$$

- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

$$
\begin{aligned}
& w_{y}=w_{y}-f(x) \\
& w_{y^{*}}=w_{y^{*}}+f(x)
\end{aligned} \quad\left(\omega_{y^{*}+} f(\lambda)\right) \cdot\left(\left(\lambda \mid \geq \omega_{y^{*}} \cdot \|_{5}(1)\right.\right.
$$

Problems with the Perceptron

- Noise: if the data isn't separable, weights might thrash
- Averaging weight vectors over time can help (averaged perceptron)
- Mediocre generalization: finds a "barely" separating solution
- Overtraining: test / held-out accuracy usually rises, then falls
- Overtraining is a kind of overfitting

Fixing the Perceptron: MIRA

- Update size that fixes the current mistake and also minimizes the change to w

Guessed y instead of y^{*} on example x with features $f(x)$

- Update w by solving:
$\underbrace{\min _{w, \tau}} \frac{1}{2} \sum_{y} \underbrace{\left\|w_{y}-w_{y}^{\prime}\right\|^{2}}$
\rightarrow u(x) $f(x) \geq w_{\text {(4) }} f(x)+1$

$$
\left[\begin{array}{l}
w_{y}=w_{y}^{\prime}-\tau f(x) \\
w_{y^{*}}=w_{y^{*}}^{\prime}+\underline{\tau} f(x)
\end{array}\right.
$$

$0 \leq \tau \leq \mathrm{C}$

Support Vector Machines

- Maximizing the margin: good according to intuition, theory, practice
- Support vector machines (SVMs) find the separator with max margin
- Basically, SVMs are MIRA where you optimize over all examples at once

SVM

$$
\begin{gathered}
\min _{w} \frac{1}{2}\|w\|^{2} \\
\forall i, y w_{y^{*}} \cdot f\left(x_{i}\right) \geq w_{y} \cdot f\left(x_{i}\right)+1
\end{gathered}
$$

Non-Linear Separators

- Data that is linearly separable (with some noise) works out great:

- But what are we going to do if the dataset is just too hard?

- How about... mapping data to a higher-dimensional space:

Non-Linear Separators

- General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

Some Kernels

- Kernels implicitly map original vectors to higher dimensional spaces, take the dot product there, and hand the result back
- Linear kernel: $K\left(x, x^{\prime}\right)=\underbrace{x \cdot x^{\prime}}=\sum_{i} x_{i} x_{i}^{\prime}$

$$
\phi(x)=x
$$

- Quadratic kernel: $K\left(x, x^{\prime}\right)=\underbrace{\left(x \cdot x^{\prime}+1\right)^{2}}=\oint^{\phi(x)} \cdot \hat{f}\left(x^{\prime}\right)$

$$
=\sum x_{i} x_{j} x_{i}^{\prime} x_{j}^{\prime}+2 \sum x_{i} x_{i}^{\prime}+1
$$

For $x \in \Re^{3}$:

$$
\rightarrow \phi(x)=\underbrace{\left[\begin{array}{llllll}
x_{1} x_{1} & x_{1} x_{2} & x_{1} x_{3} & x_{2} x_{1} x_{2} x_{2} x_{2} x_{3} x_{3} x_{1} x_{3} x_{2} x_{3} x_{3} \sqrt{2} x_{1} & \sqrt{2} x_{2} & \sqrt{2} x_{3} \\
1
\end{array}\right]}
$$

Some Kernels (2)

- Polynomial kernel: $K\left(x, x^{\prime}\right)=\underbrace{\left(x \cdot x^{\prime}+1\right)^{d}}$

For $x \in \Re^{3}$:

$$
=\phi(x) \cdot \phi\left(x^{\prime}\right)
$$

$$
\underbrace{\phi(x)}=\left[x_{1}^{d} x_{2}^{d} x_{3}^{d} \sqrt{d} x_{1}^{d-1} x_{2} \sqrt{d} x_{1}^{d-1} x_{3} \ldots \sqrt{d} x_{1} \sqrt{d} x_{2} \sqrt{d} x_{3} 1\right]
$$

For $x \in \Re^{n}$ the d-order polynomial kernel's implicit feature space is $\binom{n+d}{d}$ dimensional.

By contrast, computing the kernel directly only requires $O(n)$ time.

Why and When Kernels?

- Can't you just add these features on your own (e.g. add all pairs of features instead of using the quadratic kernel)?
- Yes, in principle, just compute them
- No need to modify any algorithms
- But, number of features can get large (or infinite)
- Kernels let us compute with these features implicitly
- Example: implicit dot product in polynomial, Gaussian and string kernel takes much less space and time per dot product
- When can we use kernels?
- When our learning algorithm can be reformulated in terms of only inner products between feature vectors
- Examples: perceptron, support vector machine

K-nearest neighbors

- 1-NN: copy the label of the most similar data point
- K-NN: let the k nearest neighbors vote (have to devise a weighting scheme)

Truth

- Parametric models:
- Fixed set of parameters
- More data means better settings

Non-parametric models:

- Complexity of the classifier increases with data
- Better in the limit, often worse in the non-limit
- (K)NN is non-parametric

Basic Similarity

- Many similarities based on feature dot products:

$$
\operatorname{sim}\left(x, x^{\prime}\right)=f(x) \cdot f\left(x^{\prime}\right)=\sum_{i} \underbrace{f_{i}(x) f_{i}\left(x^{\prime}\right)}_{K\left(x, x^{\prime}\right)}
$$

- If features are just the pixels:

$$
\operatorname{sim}\left(x, x^{\prime}\right)=x \cdot x^{\prime}=\sum_{i} x_{i} x_{i}^{\prime}
$$

- Note: not all similarities are of this form

Important Concepts

- Data: labeled instances, e.g. emails marked spam/ham
- Training set
- Held out set
- Test set
- Features: attribute-value pairs which characterize each x
- Experimentation cycle
- Learn parameters (e.g. model probabilities) on training set
- (Tune hyperparameters on held-out set)
- Compute accuracy of test set
- Very important: never "peek" at the test set!
- Evaluation
- Accuracy: fraction of instances predicted correctly
- Overfitting and generalization
- Want a classifier which does well on test data
- Overfitting: fitting the training data very closely, but not generalizing well
- We'll investigate overfitting and generalization formally in a
 few lectures

Tuning on Held-Out Data

- Now we've got two kinds of unknowns
- Parameters: the probabilities $\mathrm{P}(\mathrm{Y} \mid \mathrm{X}), \mathrm{P}(\mathrm{Y})$
- Hyperparameters:
- Amount of smoothing to do: k, α (naïve Bayes)
- Number of passes over training data (perceptron)
- Where to learn?
- Learn parameters from training data
- Must tune hyperparameters on different data

- For each value of the hyperparameters, train and test on the held-out data
- Choose the best value and do a final test on the test data

Extension: Web Search

- Information retrieval:

$$
x=\text { "Apple Computers" }
$$

- Given information needs, produce information
- Includes, e.g. web search, question answering, and classic IR
- Web search: not exactly classification, but rather ranking

Feature-Based Ranking

Perceptron for Ranking

- Inputs x
- Candidates Y
- Many feature vectors: $f(x, y)$
- One weight vector: w
- Prediction:

$$
y=\arg \max _{y} \underline{w} \cdot \underbrace{f(\underline{x}, \underline{y})}
$$

- Update (if wrong):

$$
w=w+f\left(x, y^{*}\right)-f(x, y)
$$

