
1

CS 188: Artificial Intelligence
Spring 2011

Lecture 11: Reinforcement Learning II
2/28/2010

Pieter Abbeel – UC Berkeley

Many slides over the course adapted from either Dan Klein,
Stuart Russell or Andrew Moore

1

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAA

Announcements
§  W2: due right now
§  Submission of self-corrected copy for

partial credit due Wednesday 5:29pm
§  P3 Reinforcement Learning (RL):

§  Out, due Monday 4:59pm
§  You get to apply RL to:

§  Gridworld agent
§  Crawler
§  Pac-man

§  Recall: readings for current material
§  Online book: Sutton and Barto

 http://www.cs.ualberta.ca/~sutton/book/ebook/the-book.html 2

2

MDPs and RL Outline
§  Markov Decision Processes (MDPs)

§  Formalism
§  Value iteration
§  Expectimax Search vs. Value Iteration
§  Policy Evaluation and Policy Iteration

§  Reinforcement Learning
§  Model-based Learning
§  Model-free Learning

§  Direct Evaluation [performs policy evaluation]
§  Temporal Difference Learning [performs policy evaluation]
§  Q-Learning [learns optimal state-action value function Q*]

§  Exploration vs. exploitation
3

Reinforcement Learning
§  Still assume a Markov decision process

(MDP):
§  A set of states s ∈ S
§  A set of actions (per state) A
§  A model T(s,a,s’)
§  A reward function R(s,a,s’)

§  Still looking for a policy π(s)

§  New twist: don’t know T or R
§  I.e. don’t know which states are good or what the actions do
§  Must actually try actions and states out to learn

4

3

Reinforcement Learning

§  Reinforcement learning:
§  Still assume an MDP:

§  A set of states s ∈ S
§  A set of actions (per state) A
§  A model T(s,a,s’)
§  A reward function R(s,a,s’)

§  Still looking for a policy π(s)

§  New twist: don’t know T or R
§  I.e. don’t know which states are good or what the actions do
§  Must actually try actions and states out to learn

5

Example: learning to walk

Before learning (hand-tuned) One of many learning runs After learning
[After 1000

field
traversals]

[Kohl and Stone, ICRA 2004]

4

Model-Based Learning
§  Idea:

§  Learn the model empirically through experience
§  Solve for values as if the learned model were correct

§  Simple empirical model learning
§  Count outcomes for each s,a
§  Normalize to give estimate of T(s,a,s’)
§  Discover R(s,a,s’) when we experience (s,a,s’)

§  Solving the MDP with the learned model
§  Value iteration, or policy iteration

7

π(s)

s

s, π(s)

s, π(s),s’

s
’

Example: Learn Model in Model-
Based Learning

§  Episodes:

x

y

T(<3,3>, right, <4,3>) = 1 / 3

T(<2,3>, right, <3,3>) = 2 / 2

+100

-100

γ = 1

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

8

5

Model-based vs. Model-free
§  Model-based RL

§  First act in MDP and learn T, R
§  Then value iteration or policy iteration with learned T, R
§  Advantage: efficient use of data
§  Disadvantage: requires building a model for T, R

§  Model-free RL
§  Bypass the need to learn T, R
§  Methods to evaluate a fixed policy without knowing T, R:

§  (i) Direct Evaluation
§  (ii) Temporal Difference Learning

§  Method to learn \pi*, Q*, V* without knowing T, R
§  (iii) Q-Learning 10

Direct Evaluation

§  Repeatedly execute the policy
§  Estimate the value of the state s as the

average over all times the state s was
visited of the sum of discounted rewards
accumulated from state s onwards

11

π

6

Example: Direct Evaluation

§  Episodes:

x

y

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)
V(2,3) ~ (96 + -103) / 2 = -3.5

V(3,3) ~ (99 + 97 + -102) / 3 = 31.3

γ = 1, R = -1

+100

-100

12

Limitations of Direct Evaluation

§  Assume random initial state
§  Assume the value of state

(1,2) is known perfectly
based on past runs

§  Now for the first time
encounter (1,1) --- can we do
better than estimating V(1,1)
as the rewards outcome of
that run?

13

7

Sample-Based Policy Evaluation?

§  Who needs T and R? Approximate the
expectation with samples (drawn from T!)

14

π(s)

s

s, π(s)

s1’ s2’ s3’
s, π(s),s’

s
’

Almost! (i) Will only be in
state s once and then land
in s’ hence have only one
sample à have to keep all
samples around? (ii) Where
do we get value for s’?

Temporal-Difference Learning
§  Big idea: learn from every experience!

§  Update V(s) each time we experience (s,a,s’,r)
§  Likely s’ will contribute updates more often

§  Temporal difference learning
§  Policy still fixed!
§  Move values toward value of whatever

successor occurs: running average!

15

π(s)

s

s, π(s)

s’

Sample of V(s):

Update to V(s):

Same update:

8

Exponential Moving Average
§  Exponential moving average

§  Makes recent samples more important

§  Forgets about the past (distant past values were wrong anyway)
§  Easy to compute from the running average

§  Decreasing learning rate can give converging averages

16

Policy evaluation when T (and R) unknown --- recap

§  Model-based:
§  Learn the model empirically through experience
§  Solve for values as if the learned model were correct

§  Model-free:
§  Direct evaluation:

§  V(s) = sample estimate of sum of rewards accumulated from state s onwards

§  Temporal difference (TD) value learning:
§  Move values toward value of whatever successor occurs: running average!

18

9

Problems with TD Value Learning

§  TD value leaning is a model-free way
to do policy evaluation

§  However, if we want to turn values into
a (new) policy, we’re sunk:

§  Idea: learn Q-values directly
§  Makes action selection model-free too!

a

s

s, a

s,a,s’
s
’

19

Active Learning

§  Full reinforcement learning
§  You don’t know the transitions T(s,a,s’)
§  You don’t know the rewards R(s,a,s’)
§  You can choose any actions you like
§  Goal: learn the optimal policy
§  … what value iteration did!

§  In this case:
§  Learner makes choices!
§  Fundamental tradeoff: exploration vs. exploitation
§  This is NOT offline planning! You actually take actions in the

world and find out what happens…

20

10

Detour: Q-Value Iteration
§  Value iteration: find successive approx optimal values

§  Start with V0(s) = 0, which we know is right (why?)
§  Given Vi, calculate the values for all states for depth i+1:

§  But Q-values are more useful!
§  Start with Q0(s,a) = 0, which we know is right (why?)
§  Given Qi, calculate the q-values for all q-states for depth i+1:

21

Q-Learning
§  Q-Learning: sample-based Q-value iteration
§  Learn Q*(s,a) values

§  Receive a sample (s,a,s’,r)
§  Consider your old estimate:
§  Consider your new sample estimate:

§  Incorporate the new estimate into a running average:

23

11

Q-Learning Properties
§  Amazing result: Q-learning converges to optimal policy

§  If you explore enough
§  If you make the learning rate small enough
§  … but not decrease it too quickly!
§  Basically doesn’t matter how you select actions (!)

§  Neat property: off-policy learning
§  learn optimal policy without following it

27

Exploration / Exploitation

§  Several schemes for forcing exploration
§  Simplest: random actions (ε greedy)

§ Every time step, flip a coin
§ With probability ε, act randomly
§ With probability 1-ε, act according to current policy

§  Problems with random actions?
§ You do explore the space, but keep thrashing

around once learning is done
§ One solution: lower ε over time
§ Another solution: exploration functions

28

12

Exploration Functions
§  When to explore

§  Random actions: explore a fixed amount
§  Better idea: explore areas whose badness is not (yet)

established

§  Exploration function
§  Takes a value estimate and a count, and returns an optimistic

utility, e.g. (exact form not important)

 now becomes:

30

Qi+1(s, a) ← (1− α)Qi(s, a) + α
�
R(s, a, s�) + γmax

a�
Qi(s

�, a�)
�

Qi+1(s, a) ← (1− α)Qi(s, a) + α
�
R(s, a, s�) + γmax

a�
f(Qi(s

�, a�), N(s�, a�))
�

Q-Learning

§  Q-learning produces tables of q-values:

32

13

The Story So Far: MDPs and RL

§  We can solve small MDPs exactly,
offline

§  We can estimate values Vπ(s)
directly for a fixed policy π.

§  We can estimate Q*(s,a) for the
optimal policy while executing an
exploration policy

33

§  Value and policy
Iteration

§  Temporal
difference learning

§  Q-learning
§  Exploratory action

selection

Things we know how to do: Techniques:

Q-Learning

§  In realistic situations, we cannot possibly learn
about every single state!
§  Too many states to visit them all in training
§  Too many states to hold the q-tables in memory

§  Instead, we want to generalize:
§  Learn about some small number of training states

from experience
§  Generalize that experience to new, similar states
§  This is a fundamental idea in machine learning, and

we’ll see it over and over again

34

14

Example: Pacman

§  Let’s say we discover
through experience
that this state is bad:

§  In naïve q learning, we
know nothing about
this state or its q
states:

§  Or even this one!

35

Feature-Based Representations
§  Solution: describe a state using

a vector of features
§  Features are functions from states

to real numbers (often 0/1) that
capture important properties of the
state

§  Example features:
§  Distance to closest ghost
§  Distance to closest dot
§  Number of ghosts
§  1 / (dist to dot)2

§  Is Pacman in a tunnel? (0/1)
§  …… etc.

§  Can also describe a q-state (s, a)
with features (e.g. action moves
closer to food)

36

15

Linear Feature Functions

§  Using a feature representation, we can write a
q function (or value function) for any state
using a few weights:

§  Advantage: our experience is summed up in a
few powerful numbers

§  Disadvantage: states may share features but
be very different in value!

37

Function Approximation

§  Q-learning with linear q-functions:

§  Intuitive interpretation:
§  Adjust weights of active features
§  E.g. if something unexpectedly bad happens, disprefer all states

with that state’s features

§  Formal justification: online least squares
38

Exact Q’s

Approximate Q’s

16

Example: Q-Pacman

39

Linear regression

0 10 20 30 40

0
10

20
30

20
22
24
26

0 10 20 0

20

40

Given examples
Predict given a new point

40

17

0 20 0

20

40

0 10 20 30 40

0
10

20
30

20
22
24
26

Linear regression

Prediction Prediction

41

Ordinary Least Squares (OLS)

0 20 0

Error or “residual”

Prediction

Observation

42

18

Minimizing Error

Value update explained:

43

0 2 4 6 8 10 12 14 16 18 20 -15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting

44

19

Policy Search

45

Policy Search
§  Problem: often the feature-based policies that work well

aren’t the ones that approximate V / Q best

§  Solution: learn the policy that maximizes rewards rather
than the value that predicts rewards

§  This is the idea behind policy search, such as what
controlled the upside-down helicopter

46

20

Policy Search

§  Simplest policy search:
§  Start with an initial linear value function or Q-function
§  Nudge each feature weight up and down and see if

your policy is better than before

§  Problems:
§  How do we tell the policy got better?
§  Need to run many sample episodes!
§  If there are a lot of features, this can be impractical

47

MDPs and RL Outline

§  Markov Decision Processes (MDPs)
§  Formalism
§  Value iteration
§  Expectimax Search vs. Value Iteration
§  Policy Evaluation and Policy Iteration

§  Reinforcement Learning
§  Model-based Learning
§  Model-free Learning

§  Direct Evaluation [performs policy evaluation]
§  Temporal Difference Learning [performs policy evaluation]
§  Q-Learning [learns optimal state-action value function Q*]
§  Policy Search [learns optimal policy from subset of all policies]

48

21

To Learn More About RL

§  Online book: Sutton and Barto
 http://www.cs.ualberta.ca/~sutton/book/ebook/the-book.html

§  Graduate level course at Berkeley has
reading material pointers online:

 http://www.cs.berkeley.edu/~russell/classes/
cs294/s11/

49

Take a Deep Breath…

§  We’re done with search and planning!

§  Next, we’ll look at how to reason with
probabilities
§  Diagnosis
§  Tracking objects
§  Speech recognition
§  Robot mapping
§  … lots more!

§  Third part of course: machine learning

50

