
1 

CS 188: Artificial Intelligence 
Spring 2011 

Lecture 11: Reinforcement Learning II 
2/28/2010 

Pieter Abbeel – UC Berkeley 

Many slides over the course adapted from either Dan Klein, 
Stuart Russell or Andrew Moore 
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TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAAAA 

Announcements 
§  W2: due right now 
§  Submission of self-corrected copy for 

partial credit due Wednesday 5:29pm 
§  P3 Reinforcement Learning (RL):  

§  Out, due Monday 4:59pm 
§  You get to apply RL to: 

§  Gridworld agent 
§  Crawler 
§  Pac-man 

§  Recall: readings for current material 
§  Online book: Sutton and Barto 

  http://www.cs.ualberta.ca/~sutton/book/ebook/the-book.html 2 
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MDPs and RL Outline 
§  Markov Decision Processes (MDPs) 

§  Formalism  
§  Value iteration 
§  Expectimax Search vs. Value Iteration 
§  Policy Evaluation and Policy Iteration 

§  Reinforcement Learning 
§  Model-based Learning 
§  Model-free Learning 

§  Direct Evaluation  [performs policy evaluation] 
§  Temporal Difference Learning [performs policy evaluation] 
§  Q-Learning [learns optimal state-action value function Q*] 

§  Exploration vs. exploitation 
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Reinforcement Learning 
§  Still assume a Markov decision process 

(MDP): 
§  A set of states s ∈ S 
§  A set of actions (per state) A 
§  A model T(s,a,s’) 
§  A reward function R(s,a,s’) 

§  Still looking for a policy π(s) 

§  New twist: don’t know T or R 
§  I.e. don’t know which states are good or what the actions do 
§  Must actually try actions and states out to learn 
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Reinforcement Learning 

§  Reinforcement learning: 
§  Still assume an MDP: 

§  A set of states s ∈ S 
§  A set of actions (per state) A 
§  A model T(s,a,s’) 
§  A reward function R(s,a,s’) 

§  Still looking for a policy π(s) 

§  New twist: don’t know T or R 
§  I.e. don’t know which states are good or what the actions do 
§  Must actually try actions and states out to learn 
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Example: learning to walk 

Before learning (hand-tuned) One of many learning runs After learning 
[After 1000 

field 
traversals] 

[Kohl and Stone, ICRA 2004] 
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Model-Based Learning 
§  Idea: 

§  Learn the model empirically through experience 
§  Solve for values as if the learned model were correct 

§  Simple empirical model learning 
§  Count outcomes for each s,a 
§  Normalize to give estimate of T(s,a,s’) 
§  Discover R(s,a,s’) when we experience (s,a,s’) 

§  Solving the MDP with the learned model 
§  Value iteration, or policy iteration 
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π(s) 

s

s, π(s) 

s, π(s),s’ 

s
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Example: Learn Model in Model-
Based Learning 

§  Episodes: 

x 

y 

T(<3,3>, right, <4,3>) = 1 / 3 

T(<2,3>, right, <3,3>) = 2 / 2 

+100 

-100 

γ = 1 

(1,1) up -1 

(1,2) up -1 

(1,2) up -1 

(1,3) right -1 

(2,3) right -1 

(3,3) right -1 

(3,2) up -1 

(3,3) right -1 

(4,3) exit +100 

(done) 

(1,1) up -1 

(1,2) up -1 

(1,3) right -1 

(2,3) right -1 

(3,3) right -1 

(3,2) up -1 

(4,2) exit -100  

(done) 
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Model-based vs. Model-free 
§  Model-based RL 

§  First act in MDP and learn T, R 
§  Then value iteration or policy iteration with learned T, R 
§  Advantage: efficient use of data 
§  Disadvantage: requires building a model for T, R  

§  Model-free RL 
§  Bypass the need to learn T, R 
§  Methods to evaluate a fixed policy without knowing T, R: 

§  (i) Direct Evaluation  
§  (ii) Temporal Difference Learning 

§  Method to learn \pi*, Q*, V* without knowing T, R 
§  (iii) Q-Learning 10 

Direct Evaluation 

§  Repeatedly execute the policy  
§  Estimate the value of the state s as the 

average over all times the state s was 
visited of the sum of discounted rewards 
accumulated from state s onwards 
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Example: Direct Evaluation 

§  Episodes: 

x 

y 

(1,1) up -1 

(1,2) up -1 

(1,2) up -1 

(1,3) right -1 

(2,3) right -1 

(3,3) right -1 

(3,2) up -1 

(3,3) right -1 

(4,3) exit +100 

(done) 

(1,1) up -1 

(1,2) up -1 

(1,3) right -1 

(2,3) right -1 

(3,3) right -1 

(3,2) up -1 

(4,2) exit -100 

(done) 
V(2,3) ~ (96 + -103) / 2 = -3.5 

V(3,3) ~ (99 + 97 + -102) / 3 = 31.3 

γ = 1, R = -1  

+100 

-100 
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Limitations of Direct Evaluation 

§  Assume random initial state 
§  Assume the value of state 

(1,2) is known perfectly 
based on past runs 

§  Now for the first time 
encounter (1,1) --- can we do 
better than estimating V(1,1) 
as the rewards outcome of 
that run? 
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Sample-Based Policy Evaluation? 

§  Who needs T and R?  Approximate the 
expectation with samples (drawn from T!) 
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π(s) 

s

s, π(s) 

s1’ s2’ s3’ 
s, π(s),s’ 

s
’ 

Almost!  (i) Will only be in 
state s once and then land 
in s’ hence have only one 
sample à have to keep all 
samples around? (ii) Where 
do we get value for s’? 

Temporal-Difference Learning 
§  Big idea: learn from every experience! 

§  Update V(s) each time we experience (s,a,s’,r) 
§  Likely s’ will contribute updates more often 
 

§  Temporal difference learning 
§  Policy still fixed! 
§  Move values toward value of whatever 

successor occurs: running average! 
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π(s) 

s

s, π(s) 

s’ 

Sample of V(s): 

Update to V(s): 

Same update: 



8 

Exponential Moving Average 
§  Exponential moving average  

§  Makes recent samples more important 

§  Forgets about the past (distant past values were wrong anyway) 
§  Easy to compute from the running average  

 

§  Decreasing learning rate can give converging averages 
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Policy evaluation when T (and R) unknown --- recap 

§  Model-based: 
§  Learn the model empirically through experience 
§  Solve for values as if the learned model were correct 

§  Model-free: 
§   Direct evaluation:  

§  V(s) = sample estimate of sum of rewards accumulated from state s onwards 

§  Temporal difference (TD) value learning:  
§  Move values toward value of whatever successor occurs: running average! 
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Problems with TD Value Learning 

§  TD value leaning is a model-free way 
to do policy evaluation 

§  However, if we want to turn values into 
a (new) policy, we’re sunk: 

§  Idea: learn Q-values directly 
§  Makes action selection model-free too! 

a

s

s, a 

s,a,s’ 
s
’ 
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Active Learning 

§  Full reinforcement learning 
§  You don’t know the transitions T(s,a,s’) 
§  You don’t know the rewards R(s,a,s’) 
§  You can choose any actions you like 
§  Goal: learn the optimal policy 
§  … what value iteration did! 

§  In this case: 
§  Learner makes choices! 
§  Fundamental tradeoff: exploration vs. exploitation 
§  This is NOT offline planning!  You actually take actions in the 

world and find out what happens… 
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Detour: Q-Value Iteration 
§  Value iteration: find successive approx optimal values 

§  Start with V0(s) = 0, which we know is right (why?) 
§  Given Vi, calculate the values for all states for depth i+1: 

§  But Q-values are more useful! 
§  Start with Q0(s,a) = 0, which we know is right (why?) 
§  Given Qi, calculate the q-values for all q-states for depth i+1: 
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Q-Learning 
§  Q-Learning: sample-based Q-value iteration 
§  Learn Q*(s,a) values 

§  Receive a sample (s,a,s’,r) 
§  Consider your old estimate: 
§  Consider your new sample estimate: 

§  Incorporate the new estimate into a running average: 
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Q-Learning Properties 
§  Amazing result: Q-learning converges to optimal policy 

§  If you explore enough 
§  If you make the learning rate small enough 
§  … but not decrease it too quickly! 
§  Basically doesn’t matter how you select actions (!) 

§  Neat property: off-policy learning 
§  learn optimal policy without following it 
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Exploration / Exploitation 

§  Several schemes for forcing exploration 
§  Simplest: random actions (ε greedy) 

§ Every time step, flip a coin 
§ With probability ε, act randomly 
§ With probability 1-ε, act according to current policy 

§  Problems with random actions? 
§ You do explore the space, but keep thrashing 

around once learning is done 
§ One solution: lower ε over time 
§ Another solution: exploration functions 

28 
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Exploration Functions 
§  When to explore 

§  Random actions: explore a fixed amount 
§  Better idea: explore areas whose badness is not (yet) 

established 

§  Exploration function 
§  Takes a value estimate and a count, and returns an optimistic 

utility, e.g.                                    (exact form not important) 

 now becomes: 
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Qi+1(s, a) ← (1− α)Qi(s, a) + α
�
R(s, a, s�) + γmax

a�
Qi(s

�, a�)
�

Qi+1(s, a) ← (1− α)Qi(s, a) + α
�
R(s, a, s�) + γmax

a�
f(Qi(s

�, a�), N(s�, a�))
�

Q-Learning 

§  Q-learning produces tables of q-values: 
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The Story So Far: MDPs and RL 

§  We can solve small MDPs exactly, 
offline 

§  We can estimate values Vπ(s) 
directly for a fixed policy π. 

§  We can estimate Q*(s,a) for the 
optimal policy while executing an 
exploration policy 
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§  Value  and policy 
Iteration 

§  Temporal 
difference learning 

§  Q-learning 
§  Exploratory action 

selection 

Things we know how to do: Techniques: 

Q-Learning 

§  In realistic situations, we cannot possibly learn 
about every single state! 
§  Too many states to visit them all in training 
§  Too many states to hold the q-tables in memory 

§  Instead, we want to generalize: 
§  Learn about some small number of training states 

from experience 
§  Generalize that experience to new, similar states 
§  This is a fundamental idea in machine learning, and 

we’ll see it over and over again 
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Example: Pacman 

§  Let’s say we discover 
through experience 
that this state is bad: 

§  In naïve q learning, we 
know nothing about 
this state or its q 
states: 

§  Or even this one! 
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Feature-Based Representations 
§  Solution: describe a state using 

a vector of features 
§  Features are functions from states 

to real numbers (often 0/1) that 
capture important properties of the 
state 

§  Example features: 
§  Distance to closest ghost 
§  Distance to closest dot 
§  Number of ghosts 
§  1 / (dist to dot)2 

§  Is Pacman in a tunnel? (0/1) 
§  …… etc. 

§  Can also describe a q-state (s, a) 
with features (e.g. action moves 
closer to food) 
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Linear Feature Functions 

§  Using a feature representation, we can write a 
q function (or value function) for any state 
using a few weights: 

§  Advantage: our experience is summed up in a 
few powerful numbers 

§  Disadvantage: states may share features but 
be very different in value! 
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Function Approximation 

§  Q-learning with linear q-functions: 

§  Intuitive interpretation: 
§  Adjust weights of active features 
§  E.g. if something unexpectedly bad happens, disprefer all states 

with that state’s features 

§  Formal justification: online least squares 
38 

Exact Q’s 

Approximate Q’s 
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Example: Q-Pacman 
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Linear regression 
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Given examples 
Predict given a new point 
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Linear regression 

Prediction Prediction 
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Ordinary Least Squares (OLS) 

0 20 0 

Error or “residual” 

Prediction 

Observation 

42 



18 

Minimizing Error 

Value update explained: 
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Policy Search 

45 

Policy Search 
§  Problem: often the feature-based policies that work well 

aren’t the ones that approximate V / Q best 

§  Solution: learn the policy that maximizes rewards rather 
than the value that predicts rewards 

§  This is the idea behind policy search, such as what 
controlled the upside-down helicopter 
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Policy Search 

§  Simplest policy search: 
§  Start with an initial linear value function or Q-function 
§  Nudge each feature weight up and down and see if 

your policy is better than before 

§  Problems: 
§  How do we tell the policy got better? 
§  Need to run many sample episodes! 
§  If there are a lot of features, this can be impractical 
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MDPs and RL Outline 

§  Markov Decision Processes (MDPs) 
§  Formalism  
§  Value iteration 
§  Expectimax Search vs. Value Iteration 
§  Policy Evaluation and Policy Iteration 

§  Reinforcement Learning 
§  Model-based Learning 
§  Model-free Learning 

§  Direct Evaluation  [performs policy evaluation] 
§  Temporal Difference Learning [performs policy evaluation] 
§  Q-Learning [learns optimal state-action value function Q*] 
§  Policy Search [learns optimal policy from subset of all policies] 
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To Learn More About RL 

§  Online book: Sutton and Barto 
  http://www.cs.ualberta.ca/~sutton/book/ebook/the-book.html 

§  Graduate level course at Berkeley has 
reading material pointers online: 

 http://www.cs.berkeley.edu/~russell/classes/
cs294/s11/ 
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Take a Deep Breath… 

§  We’re done with search and planning! 

§  Next, we’ll look at how to reason with 
probabilities 
§  Diagnosis 
§  Tracking objects 
§  Speech recognition 
§  Robot mapping 
§  … lots more! 

§  Third part of course: machine learning 
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