CS 188: Artificial Intelligence Spring 2011

Lecture 11: Reinforcement Learning II 2/28/2010

Pieter Abbeel - UC Berkeley

Many slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore

Announcements

- W2: due right now
- Submission of self-corrected copy for partial credit due Wednesday 5:29pm
- P3 Reinforcement Learning (RL):
 - Out, due Monday 4:59pm
 - You get to apply RL to:
 - Gridworld agent
 - Crawler
 - Pac-man
- Recall: readings for current material
 - Online book: Sutton and Barto

http://www.cs.ualberta.ca/~sutton/book/ebook/the-book.html

J

MDPs and RL Outline

- Markov Decision Processes (MDPs)
 - Formalism
 - Value iteration
 - Expectimax Search vs. Value Iteration
 - Policy Evaluation and Policy Iteration
- Reinforcement Learning
 - Model-based Learning
 - Model-free Learning
 - Direct Evaluation [performs policy evaluation]
 - Temporal Difference Learning [performs policy evaluation]
 - Q-Learning [learns optimal state-action value function Q*]
 - Exploration vs. exploitation

3

Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states s ∈ S
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$
- New twist: don't know T or R
 - I.e. don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Reinforcement Learning

- Reinforcement learning:
 - Still assume an MDP:
 - A set of states s ∈ S
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
 - Still looking for a policy π(s)
 - New twist: don't know T or R
 - I.e. don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Example: learning to walk

Before learning (hand-tuned) One of many learning runs

After learning [After 1000] field traversals]

[Kohl and Stone, ICRA 2004]

Model-Based Learning

- Idea:
 - Learn the model empirically through experience
 - Solve for values as if the learned model were correct
- Simple empirical model learning
 - Count outcomes for each s.a
 - Normalize to give estimate of T(s,a,s')
 - Discover **R(s,a,s')** when we experience (s,a,s')

- Solving the MDP with the learned model
 - Value iteration, or policy iteration

Example: Learn Model in Model-**Based Learning**

Episodes:

(1,1) up -1 (1,1) up -1

(1,2) up -1 (1,2) up -1

(1,2) up -1 (1,3) right -1

(1,3) right -1 (2,3) right -1 (2,3) right -1 (3,3) right -1

(3,3) right -1 (3,2) up -1

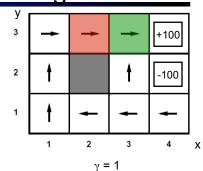
(3,2) up -1

(4,2) exit -100

(3,3) right -1 (done)

(4,3) exit +100

(done)



T(<3,3>, right, <4,3>) = 1/3

T(<2,3>, right, <3,3>) = 2/2

Model-based vs. Model-free

- Model-based RL
 - First act in MDP and learn T, R
 - Then value iteration or policy iteration with learned T, R
 - Advantage: efficient use of data
 - Disadvantage: requires building a model for T, R
- Model-free RL
 - Bypass the need to learn T, R
 - Methods to evaluate a fixed policy without knowing T, R:
 - (i) Direct Evaluation
 - (ii) Temporal Difference Learning
 - Method to learn \pi*, Q*, V* without knowing T, R
 - (iii) Q-Learning

10

Direct Evaluation

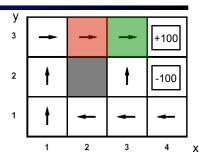
- lacktriangle Repeatedly execute the policy π
- Estimate the value of the state s as the average over all times the state s was visited of the sum of discounted rewards accumulated from state s onwards

Example: Direct Evaluation

Episodes:

(done)

(1,1) up -1	(1,1) up -1
(1,2) up -1	(1,2) up -1
(1,2) up -1	(1,3) right -1
(1,3) right -1	(2,3) right -1
(2,3) right -1	(3,3) right -1
(3,3) right -1	(3,2) up -1
(3,2) up -1	(4,2) exit -10
(3,3) right -1	(done)
(4,3) exit +100	



$$\gamma = 1, R = -1$$

$$V(2,3) \sim (96 + -103) / 2 = -3.5$$

 $V(3,3) \sim (99 + 97 + -102) / 3 = 31.3$

12

Limitations of Direct Evaluation

- Assume random initial state
- Assume the value of state (1,2) is known perfectly based on past runs
- Now for the first time encounter (1,1) --- can we do better than estimating V(1,1) as the rewards outcome of that run?

Sample-Based Policy Evaluation?

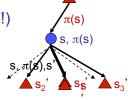
$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

 Who needs T and R? Approximate the expectation with samples (drawn from T!)

$$sample_{1} = R(s, \pi(s), s'_{1}) + \gamma V_{i}^{\pi}(s'_{1})$$
$$sample_{2} = R(s, \pi(s), s'_{2}) + \gamma V_{i}^{\pi}(s'_{2})$$

$$sample_k = R(s, \pi(s), s'_k) + \gamma V_i^{\pi}(s'_k)$$

$$V_{i+1}^{\pi}(s) \leftarrow \frac{1}{k} \sum_{i} sample_{i}$$

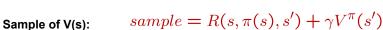


Almost! (i) Will only be in state s once and then land in s' hence have only one sample → have to keep all samples around? (ii) Where do we get value for s'?

Temporal-Difference Learning

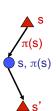
- Big idea: learn from every experience!
 - Update V(s) each time we experience (s,a,s',r)
 - · Likely s' will contribute updates more often

- Policy still fixed!
- Move values toward value of whatever successor occurs: running average!



Update to V(s):
$$V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$$

Same update:
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$$



Exponential Moving Average

- Exponential moving average
 - Makes recent samples more important

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

- Forgets about the past (distant past values were wrong anyway)
- Easy to compute from the running average

$$\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$$

Decreasing learning rate can give converging averages

16

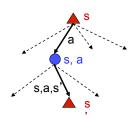
Policy evaluation when T (and R) unknown --- recap

- Model-based:
 - Learn the model empirically through experience
 - Solve for values as if the learned model were correct
- Model-free:
 - Direct evaluation:
 - V(s) = sample estimate of sum of rewards accumulated from state s onwards
 - Temporal difference (TD) value learning:
 - Move values toward value of whatever successor occurs: running average!

$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$
$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)sample$$

Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation
- However, if we want to turn values into a (new) policy, we're sunk:



$$\pi(s) = \arg\max_{a} Q^*(s, a)$$

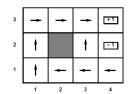
$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

- Idea: learn Q-values directly
- Makes action selection model-free too!

19

Active Learning

- Full reinforcement learning
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - You can choose any actions you like
 - Goal: learn the optimal policy
 - ... what value iteration did!



- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...

Detour: Q-Value Iteration

- Value iteration: find successive approx optimal values
 - Start with V₀(s) = 0, which we know is right (why?)
 - Given V_i, calculate the values for all states for depth i+1:

$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$

- But Q-values are more useful!
 - Start with $Q_0(s,a) = 0$, which we know is right (why?)
 - Given Q_i, calculate the q-values for all q-states for depth i+1:

$$Q_{i+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_i(s',a') \right]$$

21

Q-Learning

- Q-Learning: sample-based Q-value iteration
- Learn Q*(s,a) values
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate:

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q^*(s', a') \right]$$
$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

• Incorporate the new estimate into a running average:

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) [sample]$$

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy
 - If you explore enough
 - If you make the learning rate small enough
 - ... but not decrease it too quickly!
 - Basically doesn't matter how you select actions (!)
- Neat property: off-policy learning
 - learn optimal policy without following it

27

Exploration / Exploitation

- Several schemes for forcing exploration
 - Simplest: random actions (ε greedy)
 - Every time step, flip a coin
 - With probability ε, act randomly
 - With probability 1-ε, act according to current policy
 - Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

Exploration Functions

- When to explore
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established
- Exploration function
 - Takes a value estimate and a count, and returns an optimistic utility, e.g. f(u,n) = u + k/n (exact form not important)

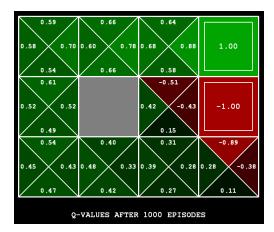
$$Q_{i+1}(s, a) \leftarrow (1 - \alpha)Q_i(s, a) + \alpha \left(R(s, a, s') + \gamma \max_{a'} Q_i(s', a')\right)$$

$$Q_{i+1}(s,a) \leftarrow (1-\alpha)Q_i(s,a) + \alpha \left(R(s,a,s') + \gamma \max_{a'} f(Q_i(s',a'), N(s',a'))\right)$$

30

Q-Learning

Q-learning produces tables of q-values:



The Story So Far: MDPs and RL

Things we know how to do:

We can solve small MDPs exactly, offline

- We can estimate values V^π(s) directly for a fixed policy π.
- We can estimate Q*(s,a) for the optimal policy while executing an exploration policy

Techniques:

- Value and policy Iteration
- Temporal difference learning
- Q-learning
- Exploratory action selection

33

Q-Learning

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar states
 - This is a fundamental idea in machine learning, and we'll see it over and over again

Example: Pacman

- Let's say we discover through experience that this state is bad:
- In naïve q learning, we know nothing about this state or its q states:
- Or even this one!

35

Feature-Based Representations

- Solution: describe a state using a vector of features
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Feature Functions

 Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but be very different in value!

37

Function Approximation

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Q-learning with linear q-functions:

$$\begin{aligned} & \textit{transition} &= (s, a, r, s') \\ & \textit{difference} &= \left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a) \\ & Q(s, a) \leftarrow Q(s, a) + \alpha \left[\textit{difference} \right] & \textit{Exact Q' s} \\ & w_i \leftarrow w_i + \alpha \left[\textit{difference} \right] f_i(s, a) & \textit{Approximate Q' s} \end{aligned}$$

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g. if something unexpectedly bad happens, disprefer all states with that state's features
- Formal justification: online least squares

Example: Q-Pacman

$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$

$$f_{DOT}(s, \text{NORTH}) = 0.5$$

$$f_{GST}(s, \text{NORTH}) = 1.0$$

$$Q(s,a) = +1$$

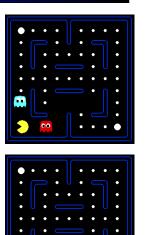
$$R(s,a,s') = -500$$

$$error = -501$$

$$w_{DOT} \leftarrow 4.0 + \alpha \left[-501 \right] 0.5$$

$$w_{GST} \leftarrow -1.0 + \alpha \left[-501 \right] 1.0$$

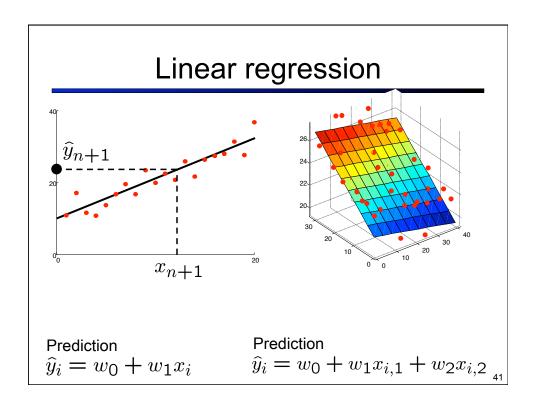
$$Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$$

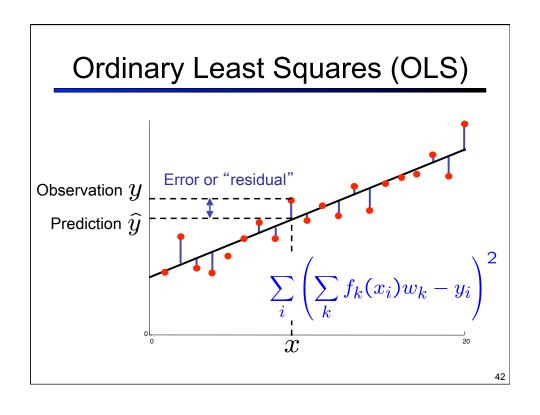




Linear regression

Given examples $(x_i, y_i)_{i=1...n}$ Predict y_{n+1} given a new point x_{n+1}





Minimizing Error

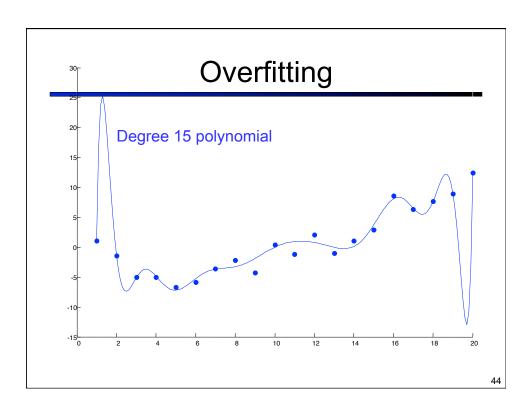
$$E(w) = \frac{1}{2} \sum_{i} \left(\sum_{k} f_{k}(x_{i}) w_{k} - y_{i} \right)^{2}$$

$$\frac{\partial E}{\partial w_{m}} = \sum_{i} \left(\sum_{k} f_{k}(x_{i}) w_{k} - y_{i} \right) f_{m}(x_{i})$$

$$E \leftarrow E + \alpha \sum_{i} \left(\sum_{k} f_{k}(x_{i}) w_{k} - y_{i} \right) f_{m}(x_{i})$$

Value update explained:

$$w_i \leftarrow w_i + \alpha [error] f_i(s, a)$$



Policy Search

45

Policy Search

- Problem: often the feature-based policies that work well aren't the ones that approximate V / Q best
- Solution: learn the policy that maximizes rewards rather than the value that predicts rewards
- This is the idea behind policy search, such as what controlled the upside-down helicopter

Policy Search

- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before
- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical

47

MDPs and RL Outline

- Markov Decision Processes (MDPs)
 - Formalism
 - Value iteration
 - Expectimax Search vs. Value Iteration
 - Policy Evaluation and Policy Iteration
- Reinforcement Learning
 - Model-based Learning
 - Model-free Learning
 - Direct Evaluation [performs policy evaluation]
 - Temporal Difference Learning [performs policy evaluation]
 - Q-Learning [learns optimal state-action value function Q*]
 - Policy Search [learns optimal policy from subset of all policies]

To Learn More About RL

Online book: Sutton and Barto

http://www.cs.ualberta.ca/~sutton/book/ebook/the-book.html

• Graduate level course at Berkeley has reading material pointers online:

http://www.cs.berkeley.edu/~russell/classes/cs294/s11/

49

Take a Deep Breath...

- We're done with search and planning!
- Next, we'll look at how to reason with probabilities
 - Diagnosis
 - Tracking objects
 - Speech recognition
 - Robot mapping
 - ... lots more!
- Third part of course: machine learning