Today

- Nearest neighbors
- Kernels
- Applications:
 - Extension to ranking / web-search
 - Pacman apprenticeship

Classification overview

- Naïve Bayes:
 - Builds a model training data
 - Gives prediction probabilities
 - Strong assumption about feature independence
 - One pass through data (counting)

- Perceptron:
 - Makes less assumptions about data
 - Mistake-driven learning
 - Multiple passes through data (prediction)
 - Often more accurate

- MIRA:
 - Like perceptron, but adaptive scaling of size of update

- SVM:
 - Properties similar to perceptron
 - Convex optimization formulation

- Nearest-Neighbor:
 - Non-parametric: more expressive with more training data

- Kernels
 - Efficient way to make linear learning architectures into nonlinear ones

Case-Based Reasoning

- Similarity for classification
 - Case-based reasoning
 - Predict an instance’s label using similar instances

- Nearest-neighbor classification
 - 1-NN: copy the label of the most similar data point
 - K-NN: let the k nearest neighbors vote (have to devise a weighting scheme)

- Key issue: how to define similarity

- Trade-off:
 - Small k gives relevant neighbors
 - Large k gives smoother functions
 - Sound familiar?

[Demo]

http://www.cs.cmu.edu/~zhuxj/courseproject/kndemo/KNN.html
Parametric / Non-parametric
- **Parametric models:**
 - Fixed set of parameters
 - More data means better settings
- **Non-parametric models:**
 - Complexity of the classifier increases with data
 - Better in the limit, often worse in the non-limit
- (K)NN is non-parametric

Nearest-Neighbor Classification
- Nearest neighbor for digits:
 - Take new image
 - Compare to all training images
 - Assign based on closest example
- Encoding: image is vector of intensities:
 - \(\mathbf{1} = [0.0, 0.0, 0.3, 0.6, 0.7, 0.1, \ldots, 0.0] \)
- What's the similarity function?
 - Dot product of two images vectors?
 \[\text{sim}(x, x') = x \cdot x' = \sum_i x_i x'_i \]
 - Usually normalize vectors so \(\| \mathbf{x} \| = 1 \)
 - \(\min = 0 \) (when?), \(\max = 1 \) (when?)

Basic Similarity
- Many similarities based on feature dot products:
 \[\text{sim}(x, x') = f(x) \cdot f(x') = \sum_i f_i(x) f_i(x') \]
- If features are just the pixels:
 \[\text{sim}(x, x') = x \cdot x' = \sum_i x_i x'_i \]
- Note: not all similarities are of this form

Invariant Metrics
- Better distances use knowledge about vision
- Invariant metrics:
 - Similarities are invariant under certain transformations
 - Rotation, scaling, translation, stroke-thickness…
 - E.g:
 - 16 x 16 = 256 pixels; a point in 256-dim space
 - Small similarity in \(\mathbb{R}^{256} \) (why?)
 - Variety of invariant metrics in literature
 - Viable alternative: transform training examples such that training set includes all variations

Rotation Invariant Metrics
- Each example is now a curve in \(\mathbb{R}^{256} \)
- Rotation invariant similarity:
 \[s' = \max s(r(3), r(3')) \]
 - E.g, highest similarity between images’ rotation lines

Classification overview
- Naïve Bayes
- Perceptron, MIRA
- SVM
- Nearest-Neighbor
- Kernels
A Tale of Two Approaches …

- Nearest neighbor-like approaches
 - Can use fancy similarity functions
 - Don’t actually get to do explicit learning

- Perceptron-like approaches
 - Explicit training to reduce empirical error
 - Can’t use fancy similarity, only linear
 - Or can they? Let’s find out!

Perceptron Weights

- What is the final value of a weight \(w_y \) of a perceptron?
 - Can it be any real vector?
 - No! It’s built by adding up inputs.

\[
\begin{align*}
 w_y &= 0 + f(x_1) - f(x_2) + \ldots \\
 w_y &= \sum_i \alpha_{i,y} f(x_i)
\end{align*}
\]

- Can reconstruct weight vectors (the primal representation) from update counts (the dual representation)

\[
\alpha_y = (\alpha_{1,y}, \alpha_{2,y}, \ldots, \alpha_{n,y})
\]

Dual Perceptron

- How to classify a new example \(x \)?

\[
\text{score}(y, x) = w_y \cdot f(x) = \left(\sum_i \alpha_{i,y} f(x_i) \right) \cdot f(x) = \sum_i \alpha_{i,y} (f(x_i) \cdot f(x)) = \sum_i \alpha_{i,y} K(x_i, x)
\]

- If someone tells us the value of \(K \) for each pair of examples, never need to build the weight vectors!

Dual Perceptron

- Start with zero counts (alpha)
- Pick up training instances one by one
- Try to classify \(x_n \)
- If correct, no change!
- If wrong: lower count of wrong class (for this instance), raise score of right class (for this instance)

\[
\begin{align*}
 \alpha_{y,n} &= \alpha_{y,n} - 1 \\
 w_y &= w_y - f(x_n) \\
 \alpha_{y^*,n} &= \alpha_{y^*,n} + 1 \\
 w_{y^*} &= w_{y^*} + f(x_n)
\end{align*}
\]

Kernelized Perceptron

- If we had a black box (kernel) which told us the dot product of two examples \(x \) and \(y \):
 - Could work entirely with the dual representation
 - No need to ever take dot products ("kernel trick")

\[
\text{score}(y, x) = w_y \cdot f(x) = \sum_i \alpha_{i,y} K(x_i, x)
\]

- Like nearest neighbor – work with black-box similarities
- Downside: slow if many examples get nonzero alpha

Kernelized MIRA

\[
\begin{align*}
 \alpha_{y,n} &= \alpha_{y,n} - \tau \\
 w_y &= w_y' - \tau f(x) \\
 \alpha_{y^*,n} &= \alpha_{y^*,n} + \tau \\
 w_{y^*} &= w_{y^*}' + \tau f(x)
\end{align*}
\]

- Our formula for \(\tau \) (see last lecture)

\[
\tau^* = \min \left(\frac{(w_y' - w_{y^*}') \cdot f + 1}{2f}, C \right)
\]

\[
\tau^* = \min \left(\frac{\sum_i \alpha_{i,y} K(x_i, x) - \sum_i \alpha_{i,y^*} K(x_i, x) + 1}{2K(x, x)}, C \right)
\]
Kernels: Who Cares?

- So far: a very strange way of doing a very simple calculation

- "Kernel trick": we can substitute any* similarity function in place of the dot product

- Lets us learn new kinds of hypothesis

* Fine print: if your kernel doesn’t satisfy certain technical requirements, lots of proofs break. E.g. convergence, mistake bounds. In practice, illegal kernels sometimes work (but not always).

Non-Linear Separators

- Data that is linearly separable (with some noise) works out great:

- But what are we going to do if the dataset is just too hard?

- How about… mapping data to a higher-dimensional space:

Some Kernels

- Kernels implicitly map original vectors to higher dimensional spaces, take the dot product there, and hand the result back

 - Linear kernel: \(K(x, x') = x \cdot x' = \sum_i x_i x_i' \)
 \[\phi(x) = x \]

 - Quadratic kernel: \(K(x, x') = (x \cdot x' + 1)^2 \)
 \[\phi(x) = [x_1 x_2 x_3 x_4 x_5 x_6 \ldots x_1 x_2 x_3 x_4 x_5 x_6 \ldots] \]

Some Kernels (2)

- Polynomial kernel: \(K(x, x') = (x \cdot x' + 1)^d \)

For \(x \in \mathbb{R}^3 \):

\[\phi(x) = [x_1^d x_2^d x_3^d \sqrt{d} x_1^{d-1} x_2 \sqrt{d} x_2^{d-1} x_3 \ldots \sqrt{d} x_1 \sqrt{d} x_2 \sqrt{d} x_3] \]

For \(x \in \mathbb{R}^n \) the \(d \)-order polynomial kernel’s implicit feature space is \(\binom{n+d}{d} \) dimensional.

By contrast, computing the kernel directly only requires \(O(n) \) time.

Some Kernels (3)

- Kernels implicitly map original vectors to higher dimensional spaces, take the dot product there, and hand the result back

 - Radial Basis Function (or Gaussian) Kernel: infinite dimensional representation
 \[K(x, x') = \exp(-|x - x'|^2) \]

 - Discrete kernels: e.g. string kernels
 - Features: all possible strings up to some length
 - To compute kernel: don’t need to enumerate all substrings for each word, but only need to find strings appearing in both \(x \) and \(x' \)
Why Kernels?

- Can’t you just add these features on your own (e.g. add all pairs of features instead of using the quadratic kernel)?
 - Yes, in principle, just compute them
 - No need to modify any algorithms
 - But, number of features can get large (or infinite)
- Kernels let us compute with these features implicitly
 - Example: implicit dot product in polynomial, Gaussian and string kernel takes much less space and time per dot product
 - Of course, there’s the cost for using the pure dual algorithms: you need to compute the similarity to every training datum

Recap: Classification

- Classification systems:
 - Supervised learning
 - Make a prediction given evidence
 - We’ve seen several methods for this
 - Useful when you have labeled data

Extension: Web Search

- Information retrieval:
 - Given information needs, produce information
 - Includes, e.g. web search, question answering, and classic IR
- Web search: not exactly classification, but rather ranking

Feature-Based Ranking

\[f(x, z) = [0.3 \ 5 \ 0 \ 0 \ \ldots] \]

\[f(x, z) = [0.8 \ 4 \ 2 \ 1 \ \ldots] \]

Perceptron for Ranking

- Inputs \(x \)
- Candidates \(y \)
- Many feature vectors: \(f(x, y) \)
- One weight vector: \(w \)
 - Prediction:
 \[y = \arg \max_y \ w \cdot f(x, y) \]
 - Update (if wrong):
 \[w = w + f(x, y^*) - f(x, y) \]

Pacman Apprenticeship!

- Examples are states \(s \)
- Candidates are pairs \((s, a)\)
- “Correct” actions: those taken by expert
- Features defined over \((s, a)\) pairs: \(f(s, a) \)
- Score of a \(q \)-state \((s, a)\) given by:
 \[w \cdot f(s, a) \]
- How is this VERY different from reinforcement learning?