MDP question.

Consider an MDP (S, A, T, gamma, R). When your transition s,a,s’ would standardly
give you a reward R(s,a,s), you don’t get to collect this reward right away. Rather it
can be thought of as a certificate, and to cash it in for real reward you need to visita
special state s*. When you land in the special state s*, you automatically cash in ail
your reward certificates in exchange for a reward corresponding to the total value

of the reward certificates.

Formulate an MDP such that the optimal policy in this new MDP maximizes the
expected sum of (discounted) cashed in rewards.

Application: this could be relevant when, let’s say, you are collecting resources that
need to be brought back to a base to be valuable and if you get intercepted along the
way back to the base, no value was obtained from finding these resources.
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Co 188 [ntroduction to |

Fall 2006 Artificial Intelligence Final E'Xam
#

" You have 180 minutes. The exam is closed-book (except for your 3 pages of notes), no electronics (other than basic
calculators). 160 points total. Don’t panic!

Mark your answers ON THE EXAM ITSELF. Write your name, SID, login, and sectlon number at the top of each
page.

If you are not sure of your answer you may wish to provide a brief explanation. All short answer sections can be
successfully answered in a few sentences af most.

For official use only
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1. (i4 points.) 'I‘rue/False
FEach problem is worth 2 points. Incorrect answers are worth 0 points. Skipped questions are worth 1 point.

(a) @ JFalse: All fringe-based graph search stra.tegles are complete for finite state spaces.

(b) Tf*ue/ @ If a tree search method is optimal, then the corresponding graph search is also optimal.

(e) ey False: In esta.bhshlng arc consistency, some arcs may have to be processed (made consistent) multiple
times.

(&) Um False: Reflex agents can be rational.

() % ‘False: Given its parents, a variable X in a Bayes’ net is conditionally independent of sl variables
Y which are not descendents of X (1 e. not X's children, not its children’s children, etc.).

(f ) @/False A reinforcement learning agent can learn an optimal policy even if it executes only random
actions.
@/False A reinforcement learning agent’s behavior can be altered snnply by altering the reward
function. .




MDP question.

Consider an MDP (S, A, T, gamma, R). When your transition s,a,s’ would standardly
give you a reward R(s,a,s’), you don’t get to collect this reward right away. Rather it
can be thought of as a certificate, and to cash it in for real reward you need to visit a
special state s*. When you visit the special state s* at time t, you can cash in all your
reward certificates in exchange for a reward corresponding to the total va]ue of the
reward certificates, multiplied by gammat.

Formulate an MDP (S, A’, T, gamma’, R’) such that the optimal policy in this new
MDP maximizes the expected sum of {discounted) cashed in rewards,

Application: this could be relevant when, let’s say, ybu are collecting resources that
need to be brought back to a base to be valuable and if you get intercepted along the
way back to the base, no value was obtained from finding these resources.



2. (24 points.) Search and Bayes’ Nets

Consider the problem of finding the most likely explanation in a general Bayes’ net. The input is a network Gin
which some variables X, ... X, are observed, and the output is an assignment to all the variables X ... Xn,
consistent with the observations, which has maximum probability. You will formulate this problem as a state
* gpace search problem. Assume that the network is constructed such that for any variable X, its parents

~ Parents(X;) are variables X;; for j <.

States: each partial assigmﬁent to a prefix of the variables, of the form {Xh =21, Xp = 22,... Xp = Tk}

Initial state: the empty assignment {}
Successor function: 77
Goal test: the assignment is complete (i.e. assigns all variables)

Step cost: 77 .

() (3 pts) Give an expression for the size of the state space if each variable X; has IJ; elements in its domain.
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(b) (3 pts) What is the successor function for this search problem?
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{c) (4 pts) What is the cost function for this search problem? Hini: Recall that logab = loga +logb and

that search minimizes tolal cost.
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(d) (4 pts) Give two reasons why BFS would be a poor choice for solving this problgm.
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{(e) {6 pts) Give a non-trivial admissible heuristic for this problem. You heuristic should be efficient to
corpute. Justify the admissibility of your heuristic briefly.
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(f) {4 pts) Briefly describe how we might use local search to solve this problem.
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¢~ Admissible Heuristics: Suppose that we have a heuristic function which is not admissible, but e-admissible,

meaning for some known € > 0,
h(n) < h*{n)+e  for all nodes n

where #*(n) is the optimal completion cost. In other words, A is never more than ¢ from being optimal.

(e) (1 point) Is using A* with an e-admissible heuristic complete? Briefly justify.
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(f) (2 points) Assuming we utilize an ¢ admissible heuristic in standard A* search, how much worse than the
optimal solution can we get? Le., if ¢” is the optimal cost for a search problem, what is the worst cost solation
an € admissible heuristic would yield? Justify your answer.
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(g) (2 points} Suggest a modification to the A* algorithm which will be guaranteed to yield an optimal
solution using an e-admissible heuristic with fixed, known . Justify your answer.
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{d) Describe an effective heuristic for deciding which variable to assign next in a backtracking CSP solver.
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{(e) Describe an effective heuristic for deciding which value of a variable to assign next in a backtracking CSP
solver.

. Doast  comstaani lue

(f hy does money not generally work well as a utility scale?

End of Exam
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3. (19 points.) Bayes’ Nets

Consider the following pairs of Bayes’ nets. If the two networks have identical conditional independences, write
same, along with writing one of their shared independence (or none if they assert none). If the two networds
have different conditional independences, write different, along with writing an independence that one has but
not the other. For example, in the following case you would answer as shown:
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The next parts involve computing various quantities in the network below. These questions are designed so
that they can be answered with a minimum of computation. If you find yourself doing copious amount of
computation for each part, step back and consider whether there is simpler way to deduce the answer.
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(b) (2 pts) P(d]a)
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Consider computing the following quantities in the above network using various methods:
(i) P(A,c,d) (&) P(Cld) (iit) P(D|e) {iv) P(D)
(i) {2 pts) Which query is least expensive using inference by enumeration? _
(A (Lod)  vemed b sumak

(k) (2 pts) Which query is most improved by using likelihood weighting instead of rejection sampling (in
terms of number of samples required)?
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4. (15 points.) Bayes Nets: Snuffles

Assume there are two types of conditions: (S)inus congestion and (Mlu. Sinus congestion is is caused by
{A)llergy or the fiu.

There are three ohserved symptoms for these conditions: {H)eadache, (R)unny nose, and fe(V)er. Runny nose
and headaches are directly caused by sinus congestion (only}, while fever comes from having the flu (only). For
example, allergies only cause runny noses indirectly. Assume each variable is boolean.

ol

(a) (2 points) Consider the four Bayes Nets shown. Ciircle the one which models the domain (as described

abave) best. - .
LC

(b) (3 points) For each network, if it models the domain exactly as above, write correct. If it has too many
conditional independence properties, write extra independence and state one that it has but should not have.
If it has too few conditional independence properties, write missing independence and state one that it should

have but does not have.
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(c) (3 points) Assume we wanted to remove the Sinus congestion (S8) node. Draw the minimal Bayes Net
over the remaining variables which can encode the original model’s marginal distribution over the remaining

=1

\



Pieter Abbeel



10

{d) (2 points) In the original network you chose, which guery is more efficient to compute using variable
elimination: P(F|r,v, h,a,s) or P{F)? Briefly justify.
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(e) {1 point) Give the sample estimate of P(f) or state why it cannot be computed.
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(f) (1 point} Give the sample estimate of P{f|k) or state why it cannot be computed.
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(g) {1 point) Give the sample estimate of P{f|v) or state why it cannot be computed.

O
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(h) (2 points) For rejection sampling in general (not necessarily on these samples), which query will require
more samples to compute to a certain degree of accuracy, P{f|h) or P(f|h,a)? Justify your answer in general
terms.
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5. (30 points.) Bayes’ Nets

Tn the game of Minesweeper, there are bombs placed on a grid; you do not know where or how many. Assume
that each square (%, ) independently has a bomb (B ; = true) with probability b. What you can observe for
a given square is a reading N; ; of the number of bombs in adjacent squares (i.e. the eight closest squares not
including the squere itself). The variables N; ; can therefore take the values 0 through 8, plus a special value
bomb if the square itself has a bomb (at which point the adjacent bomb count has no effect on the reading). If
a square has less than 8 neighbors, such as on the boundaries, its N has an appropriately limited domain. In

~ classic Minesweeper, you lose if you try to reveal a square with a bomb; you will ignore that complication in
this problem. -

(a) {3 pts) Draw a Bayes’ net for a one-dimensional 4x1 Minesweeper grid, showing all eight variables
(By...By and Ny... N,). Show the minimal set of arcs needed to correctly model the domain above.

(b} (8 pts) Fully specify the CPTs for B, and Ny, assuming that there is no noise in the readings (i.e. that
the number of adjacent bombs (or bomb) is reported exactly, deterministically). Your answers may use
the bomb rate b if needed.
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{c) (3 pts)} What are the posterior probabilities of bombs in each of the four squares, given no information?

Neehn, 3dd F( b = dpue J=b

(d} (4 pts) If we observe N, = 1, what are the posterior probabilities of bombs in each square?

?(61 ::"JY“ULD :@C()}?: k_‘(‘wL):'JL
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{e) (4 pts) On the following two-dimensional grid, assume we know the value of N4, Ng, N, and Np, and
we are about to observe Ng. Shade in the squares whose posterior bomb probabilities can change as a
result of this new observation.
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5. (12 points.) HMMs: Forward and Backward Algorithms

Recall that HMMs model hidden variables X1+ = Xy, .. X and evidence variables Eyy = Ey. ..Ep. The
forward algorithm incrementally computes P(X,,ey) for increasing ¢ for the purpose of caleulating P(X:|e1.),
the posterior belief over X; given current evidence e; and past evidence e3;4—3 in an HMM. A more general
query is to condition on all evidence, past, present, and future: P(X,le1.w). In this problem, you will work
out a method of doing so.

(a) (4 points) Use the laws of probability and the conditional independence properties of an HMM to give an
expression for P(eyy1:v12:) in terms of Plesyo: niTes1) and the basic HMM quantities (P{X|X") and P(E|X)).
You do not need to worry about the base case.

P(etH:Nm):Z%D (Q‘H«H ,”%,H\br): Z P(e{,ﬁ:” .\%tj%).f?(lm ]‘E@l@
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(b} (3 points) Give an expression for the posterior distribution at a single time step, Plz,le1.n), in terms of
basic HEMM quantities and / or quantities computed by the forward and backward algorithms. Hint: use the
chain rule along with the conditional independence properties of HMMs.

This computation is called the backward algorithm.
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(c) (2 points) G n expression for the posterior distribution over two time steps, P{zy, z¢_1le1.n ), in terms
of basic IMM quantities and / or guantities computed by the forward and backward algorithms.
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In a second-order HMM, the transition function depends on the past two states: P(zylrig-1) = P{zlze-1, Ti—2).
Emissions still depend only on the current state.

(d) (3 points) Give the second-order generalization of the forward recurrence. Again, you may disregard the
base case. Hint: you should think about both the left and right hand sides.
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