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CS 188: Artificial Intelligence 
  

Lecture 17: HMMs and Particle Filtering 

Pieter Abbeel --- UC Berkeley 

Many slides over this course adapted from Dan Klein, Stuart Russell, 
Andrew Moore 

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAAAAAAAA 

Reasoning over Time or Space 

§  Often, we want to reason about a sequence of 
observations 
§  Speech recognition 
§  Robot localization 
§  User attention 
§  Medical monitoring 

§  Need to introduce time (or space) into our 
models 
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Outline  
§  Markov Models 

 ( = a particular Bayes net) 

§  Hidden Markov Models (HMMs) 
§  Representation 

( = another particular Bayes net) 
§  Inference 

§  Forward algorithm ( = variable elimination) 
§  Particle filtering ( = likelihood weighting with some tweaks) 
§  Viterbi (= variable elimination, but replace sum by max 

    = graph search) 

§   Dynamic Bayes’ Nets  
§  Representation 

§  (= yet another particular Bayes’ net) 
§  Inference: forward algorithm and particle filtering 
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Markov Models 

§  A Markov model is a chain-structured BN 
§  Each node is identically distributed (stationarity) 
§  Value of X at a given time is called the state 
§  As a BN: 

§  Parameters: called transition probabilities or dynamics, 
specify how the state evolves over time (also, initial state 
probabilities) 

§  Same as MDP transition model, but no choice of action 

X2 X1 X3 X4 

Conditional Independence 

§  Basic conditional independence: 
§  Past and future independent of the present 
§  Each time step only depends on the previous 
§  This is called the (first order) Markov property 

§  Note that the chain is just a (growing) BN 
§  We can always use generic BN reasoning on it if we 

truncate the chain at a fixed length 

X2 X1 X3 X4 
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§  Slow answer: inference by enumeration 
§  Enumerate all sequences of length t which end in s 
§  Add up their probabilities 

§  = join on X1, X2, X3, then sum over x1, x2, x3 
9 

X2 X1 X3 X4 

Query: P(X4) 
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Query: P(X4) 
§  Fast answer: variable elimination 

§  Order: X1, X2, X3 
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X2 X1 X3 X4 

Query P(X_t) 

§  Variable elimination in order X1, X2, …, Xt-1 

    computes for k = 2, 3, …, t 
 
 
 

= “mini-forward algorithm” 
Note: common thread in this lecture: special cases of algorithms we 
already know, and they have a special name in the context of HMMs for 
historical reasons.   11 

X2 X1 X3 X4 

Forward simulation 

Example Markov Chain: Weather 
§  States: X = {rain, sun} 
§  CPT P(Xt | Xt-1): 

rain sun 

0.9 

0.7 

0.3 

0.1 

Two new ways of 
representing the same  

CPT, that are often 
used for Markov models 

(These are not BNs!) 
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sun 

rain 

sun 

rain 

0.1 
0.9 

0.7 

0.3 

Xt-1 Xt P(Xt|Xt-1) 
sun sun 0.9 
sun rain 0.1 
rain sun 0.3 
rain rain 0.7 

Example Run of Mini-Forward Algorithm 
§  From initial observation of sun 

  
§  From initial observation of rain 

§  From yet another initial distribution P(X1): 

P(X1) P(X2) P(X3) P(X∞) 
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P(X4) 

P(X1) P(X2) P(X3) P(X∞) P(X4) 

P(X1) P(X∞) 
… 

Stationary Distributions 

§  For most chains: 
§  influence of initial distribution gets less and less over 

time. 
§  the distribution we end up in is independent of the initial 

distribution 

§  Stationary distribution: 
§  Distribution we end up with is called the stationary 

distribution P1 of the chain 
§  It satisfies 

Application of Markov Chain Stationary 
Distribution: Web Link Analysis 

§  PageRank over a web graph 
§  Each web page is a state 
§  Initial distribution: uniform over pages 
§  Transitions: 

§  With prob. c, uniform jump to a 
 random page (dotted lines, not all shown) 

§  With prob. 1-c, follow a random 
 outlink (solid lines) 

§  Stationary distribution 
§  Will spend more time on highly reachable pages 
§  E.g. many ways to get to the Acrobat Reader download page 
§  Somewhat robust to link spam 
§  Google 1.0 returned the set of pages containing all your 

keywords in decreasing rank, now all search engines use link 
analysis along with many other factors (rank actually getting 
less important over time) 16 
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Application of Markov Chain Stationary 
Distribution: Gibbs Sampling* 

§  Each joint instantiation over all hidden and query 
variables is a state.  Let X = H \union Q 

§  Transitions: 
§  With probability 1/n resample variable Xj according to  

 P(Xj | x1, x2, …, xj-1, xj+1, …, xn, e1, …, em) 

§  Stationary distribution: 
§  = conditional distribution P(X1, X2 , … , Xn|e1, …, em) 
à When running Gibbs sampling long enough we get a 

sample from the desired distribution! 
 
We did not prove this, all we did is stating this result. 17 

Outline  
§  Markov Models 

 ( = a particular Bayes net) 

§  Hidden Markov Models (HMMs) 
§  Representation 

( = another particular Bayes net) 
§  Inference 

§  Forward algorithm ( = variable elimination) 
§  Particle filtering ( = likelihood weighting with some tweaks) 
§  Viterbi (= variable elimination, but replace sum by max 

    = graph search) 

§   Dynamic Bayes’ Nets  
§  Representation 

§  (= yet another particular Bayes’ net) 
§  Inference: forward algorithm and particle filtering 
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Hidden Markov Models 
§  Markov chains not so useful for most agents 

§  Need observations to update your beliefs 

§  Hidden Markov models (HMMs) 
§  Underlying Markov chain over states S 
§  You observe outputs (effects) at each time step 
§  As a Bayes’net: 

X5 X2 

E1 

X1 X3 X4 

E2 E3 E4 E5 

Example 

§  An HMM is defined by: 
§  Initial distribution: 
§  Transitions: 
§  Emissions: 

Ghostbusters HMM 
§  P(X1) = uniform 
§  P(X|X’) = usually move clockwise, but 

sometimes move in a random direction or 
stay in place 

§  P(Rij|X) = same sensor model as before: 
red means close, green means far away. 

1/9 1/9 

1/9 1/9 

1/9 

1/9 

1/9 1/9 1/9 

P(X1) 

P(X|X’=<1,2>) 

1/6 1/6 

0 1/6 

1/2 

0 

0 0 0 X5 

X2 

Ri,j 

X1 X3 X4 

Ri,j Ri,j Ri,j 

E5 

Conditional Independence 
§  HMMs have two important independence properties: 

§  Markov hidden process, future depends on past via the present 
§  Current observation independent of all else given current state 

§  Quiz: does this mean that evidence variables are 
guaranteed to be independent? 
§  [No, they tend to correlated by the hidden state] 

X5 X2 

E1 

X1 X3 X4 

E2 E3 E4 E5 
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Real HMM Examples 
§  Speech recognition HMMs: 

§  Observations are acoustic signals (continuous valued) 
§  States are specific positions in specific words (so, tens of 

thousands) 

§  Machine translation HMMs: 
§  Observations are words (tens of thousands) 
§  States are translation options 

§  Robot tracking: 
§  Observations are range readings (continuous) 
§  States are positions on a map (continuous) 

Filtering / Monitoring 
§  Filtering, or monitoring, is the task of tracking the 

distribution Bt(X) = Pt(Xt | e1, …, et) (the belief state) over 
time 

§  We start with B1(X) in an initial setting, usually uniform 

§  As time passes, or we get observations, we update B(X) 

§  The Kalman filter was invented in the 60’s and first 
implemented as a method of trajectory estimation for the 
Apollo program 

Example: Robot Localization 

t=0 
Sensor model: can read in which directions there is a 

wall, never more than 1 mistake 
Motion model: may not execute action with small prob. 

1 0 Prob 

Example from 
Michael Pfeiffer 

Example: Robot Localization 

t=1 
Lighter grey: was possible to get the reading, 

but less likely b/c required 1 mistake 

1 0 Prob 

Example: Robot Localization 

t=2 

1 0 Prob 

Example: Robot Localization 

t=3 

1 0 Prob 
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Example: Robot Localization 

t=4 

1 0 Prob 

Example: Robot Localization 

t=5 

1 0 Prob 

Query: P(X4|e1,e2,e3,e4) --- 
Variable Elimination, X1, X2, X3 
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P (X4|e1, e2, e3, e4) ∝ P (X4, e1, e2, e3, e4) =
�

x1,x2,x3

P (x1, x2, x3, X4, e1, e2, e3, e4)

=
�

x3

�

x2

�

x1

P (e4|X4)P (X4|x3)P (e3|x3)P (x3|x2)P (e2|x2)P (x2|x1)P (e1|x1)P (x1)

=
�

x3

�

x2

�

x1

P (e4|X4)P (X4|x3)P (e3|x3)P (x3|x2)P (e2|x2)P (x2|x1)P (x1, e1)

=
�

x3

�

x2

P (e4|X4)P (X4|x3)P (e3|x3)P (x3|x2)P (e2|x2)
�

x1

P (x2|x1)P (x1, e1)

=
�

x3

�

x2

P (e4|X4)P (X4|x3)P (e3|x3)P (x3|x2)P (e2|x2)P (x2, e1)

=
�

x3

�

x2

P (e4|X4)P (X4|x3)P (e3|x3)P (x3|x2)P (x2, e1, e2)

=
�

x3

P (e4|X4)P (X4|x3)P (e3|x3)
�

x2

P (x3|x2)P (x2, e1, e2)

=
�

x3

P (e4|X4)P (X4|x3)P (e3|x3)P (x3, e1, e2)

=
�

x3

P (e4|X4)P (X4|x3)P (x3, e1, e2, e3)

= P (e4|X4)
�

x3

P (X4|x3)P (x3, e1, e2, e3)

= P (e4|X4)P (x4, e1, e2, e3)

= P (X4, e1, e2, e3, e4)

Re-occurring computation: 

The Forward Algorithm 
§  We are given evidence at each time and want to know 

§  We can derive the following updates 

§  = exactly variable elimination in order X1, X2, … 

 

We can normalize 
as we go if we want 

to have P(x|e) at 
each time step, or 

just once at the 
end… 

Belief Updating = the forward algorithm broken 
down into two steps and with normalization 

§  Forward algorithm: 

§  Can break this down into: 
§  Time update: 

§  Observation update:  

§  Normalizing in the observation update gives: 
§  Time update: 

§  Observation update:  

§  Notation:  
§  Time update: 

§  Observation update:  
 

 

§  Observation 
§  Given: P(Xt+1), P(et+1 | Xt+1) 
§  Query: P(xt+1 | et+1) 8 xt+1 

Et+1 

Xt+1 

Xt+1 Xt 

§  Passage of Time 
§  Given: P(Xt), P(Xt+1 | Xt) 
§  Query: P(xt+1)  8 xt+1 

Belief updates can also easily be derived 
from basic probability 
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Example: Passage of Time 

§  As time passes, uncertainty “accumulates” 

T = 1 T = 2 T = 5 

Transition model: ghosts usually go clockwise 

Example: Observation 

§  As we get observations, beliefs get 
reweighted, uncertainty “decreases” 

Before observation After observation 

Example HMM Outline  
§  Markov Models 

 ( = a particular Bayes net) 

§  Hidden Markov Models (HMMs) 
§  Representation 

( = another particular Bayes net) 
§  Inference 

§  Forward algorithm ( = variable elimination) 
§  Particle filtering ( = likelihood weighting with some tweaks) 
§  Viterbi (= variable elimination, but replace sum by max 

    = graph search) 

§   Dynamic Bayes’ Nets  
§  Representation 

§  (= yet another particular Bayes’ net) 
§  Inference: forward algorithm and particle filtering 
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Particle Filtering 

0.0 0.1 

0.0 0.0 

0.0 

0.2 

0.0 0.2 0.5 

§  Filtering: approximate solution 
§  Sometimes |X| is too big to use exact 

inference 
§  |X| may be too big to even store B(X) 
§  E.g. X is continuous 

§  Solution: approximate inference 
§  Track samples of X, not all values 
§  Samples are called particles 
§  Time per step is linear in the number of 

samples 
§  But: number needed may be large 
§  In memory: list of particles, not states 

§  This is how robot localization works in 
practice 

§  Particle is just new name for sample 

Representation: Particles 
§  Our representation of P(X) is now 

a list of N particles (samples) 
§  Generally, N << |X| 
§  Storing map from X to counts 

would defeat the point 

§  P(x) approximated by number of 
particles with value x 
§  So, many x will have P(x) = 0!  
§  More particles, more accuracy 

§  For now, all particles have a 
weight of 1 
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Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (1,2) 
    (3,3) 
    (3,3) 
    (2,3) 
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Particle Filtering: Elapse Time 
§  Each particle is moved by 

sampling its next position from 
the transition model 

§  This is like prior sampling – 
samples’ frequencies reflect the 
transition probs 

§  Here, most samples move 
clockwise, but some move in 
another direction or stay in place 

§  This captures the passage of 
time 
§  If enough samples, close to exact 

values before and after (consistent) 

Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (1,2) 
    (3,3) 
    (3,3) 
    (2,3) 

Particles: 
    (3,2) 
    (2,3) 
    (3,2)    
    (3,1) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (2,2) 

§  Slightly trickier: 
§  Don’t sample observation, fix it 
§  Similar to likelihood weighting, 

downweight samples based on 
the evidence 

§  As before, the probabilities 
don’t sum to one, since most 
have been downweighted (in 
fact they sum to an 
approximation of P(e)) 

Particle Filtering: Observe 

Particles: 
    (3,2)  w=.9 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (3,1)  w=.4 
    (3,3)  w=.4 
    (3,2)  w=.9 
    (1,3)  w=.1 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (2,2)  w=.4 

Particles: 
    (3,2) 
    (2,3) 
    (3,2)    
    (3,1) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (2,2) 

Particle Filtering: Resample 
§  Rather than tracking 

weighted samples, 
we resample 

§  N times, we choose 
from our weighted 
sample distribution 
(i.e. draw with 
replacement) 

§  This is equivalent to 
renormalizing the 
distribution 

§  Now the update is 
complete for this time 
step, continue with 
the next one 

Particles: 
    (3,2)  w=.9 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (3,1)  w=.4 
    (3,3)  w=.4 
    (3,2)  w=.9 
    (1,3)  w=.1 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (2,2)  w=.4 

(New) Particles: 
    (3,2) 
    (2,2) 
    (3,2)    
    (2,3) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (3,2) 

Recap: Particle Filtering 
§  Particles: track samples of states rather than an explicit distribution 
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Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (1,2) 
    (3,3) 
    (3,3) 
    (2,3) 

Elapse Weight Resample 

Particles: 
    (3,2) 
    (2,3) 
    (3,2)    
    (3,1) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (2,2) 

Particles: 
    (3,2)  w=.9 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (3,1)  w=.4 
    (3,3)  w=.4 
    (3,2)  w=.9 
    (1,3)  w=.1 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (2,2)  w=.4 

(New) Particles: 
    (3,2) 
    (2,2) 
    (3,2)    
    (2,3) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (3,2) 

Outline  
§  Markov Models 

 ( = a particular Bayes net) 

§  Hidden Markov Models (HMMs) 
§  Representation 

( = another particular Bayes net) 
§  Inference 

§  Forward algorithm ( = variable elimination) 
§  Particle filtering ( = likelihood weighting with some tweaks) 
§  Viterbi (= variable elimination, but replace sum by max 

    = graph search) 

§   Dynamic Bayes’ Nets  
§  Representation 

§  (= yet another particular Bayes’ net) 
§  Inference: forward algorithm and particle filtering 
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Dynamic Bayes Nets (DBNs) 
§  We want to track multiple variables over time, using 

multiple sources of evidence 
§  Idea: Repeat a fixed Bayes net structure at each time 
§  Variables from time t can condition on those from t-1 

§  Discrete valued dynamic Bayes nets are also HMMs 

G1
a 

E1
a E1

b 

G1
b 

G2
a 

E2
a E2

b 

G2
b 

t =1 t =2 

G3
a 

E3
a E3

b 

G3
b 

t =3 
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Exact Inference in DBNs 
§  Variable elimination applies to dynamic Bayes nets 
§  Procedure: “unroll” the network for T time steps, then 

eliminate variables until P(XT|e1:T) is computed 

§  Online belief updates: Eliminate all variables from the 
previous time step; store factors for current time only 
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G1
a 

E1
a E1

b 

G1
b 

G2
a 

E2
a E2

b 

G2
b 

G3
a 

E3
a E3

b 

G3
b 

t =1 t =2 t =3 

G3
b 

DBN Particle Filters 
§  A particle is a complete sample for a time step 
§  Initialize: Generate prior samples for the t=1 Bayes net 

§  Example particle: G1
a = (3,3) G1

b = (5,3)  

§  Elapse time: Sample a successor for each particle  
§  Example successor: G2

a = (2,3) G2
b = (6,3) 

§  Observe: Weight each entire sample by the likelihood of 
the evidence conditioned on the sample 
§  Likelihood: P(E1

a |G1
a ) * P(E1

b |G1
b )  

§  Resample: Select prior samples (tuples of values) in 
proportion to their likelihood 
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Trick I to Improve Particle Filtering 
Performance: Low Variance Resampling 

§  Advantages: 
§  More systematic coverage of space of samples 
§  If all samples have same importance weight, no 

samples are lost 
§  Lower computational complexity 

0 1 

§  If no or little noise in transitions model, all 
particles will start to coincide 

 
à regularization: introduce additional 
(artificial) noise into the transition model 

Trick II to Improve Particle Filtering 
Performance: Regularization 

Robot Localization 
§  In robot localization: 

§  We know the map, but not the robot’s position 
§  Observations may be vectors of range finder readings 
§  State space and readings are typically continuous (works 

basically like a very fine grid) and so we cannot store B(X) 
§  Particle filtering is a main technique 

§  Demos: global-floor.gif 
 

SLAM 
§  SLAM = Simultaneous Localization And Mapping 

§  We do not know the map or our location 
§  State consists of position AND map! 
§  Main techniques: Kalman filtering (Gaussian HMMs) and particle 

methods 
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Particle Filter Example 

map of particle 1 map of particle 3 

map of particle 2 

3 particles 

SLAM 
§  DEMOS 

§  Intel-lab-raw-odo.wmv 
§  Intel-lab-scan-matching.wmv 
§  visionSlam_heliOffice.wmv 

P4: Ghostbusters 2.0 (beta) 
§  Plot: Pacman's grandfather, Grandpac, 

learned to hunt ghosts for sport.   

§  He was blinded by his power, but could 
hear the ghosts’ banging and clanging. 

§  Transition Model: All ghosts move 
randomly, but are sometimes biased 

§  Emission Model: Pacman knows a 
“noisy” distance to each ghost 

1

3

5

7

9

11

13

15

Noisy distance prob 
True distance = 8 

Outline  
§  Markov Models 

 ( = a particular Bayes net) 

§  Hidden Markov Models (HMMs) 
§  Representation 

( = another particular Bayes net) 
§  Inference 

§  Forward algorithm ( = variable elimination) 
§  Particle filtering ( = likelihood weighting with some tweaks) 
§  Viterbi (= variable elimination, but replace sum by max 

    = graph search) 

§   Dynamic Bayes’ Nets  
§  Representation 

§  (= yet another particular Bayes’ net) 
§  Inference: forward algorithm and particle filtering 
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Best Explanation Queries 

§  Query: most likely seq: 

X5 X2 

E1 

X1 X3 X4 

E2 E3 E4 E5 

64 

Best Explanation Query Solution 
Method 1: Search 

§  States:  {(), +x1, -x1, +x2, -x2, …, +xt, -xt} 

§  Start state: () 

§  Actions:  in state xk, choose any assignment for state xk+1 

§  Cost:  

§  Goal test: goal(xk) = true iff k == t  
à Can run uniform cost graph search to find solution 
à Uniform cost graph search will take O( t d2 ).  Think about this! 

slight abuse of notation, 
assuming P(x1|x0) = P(x1) 
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Best Explanation Query Solution Method 2: Viterbi 
Algorithm (= max-product version of forward algorithm) 

66 

Viterbi computational complexity: O(t d2) 

Compare to forward algorithm: 

Further readings 

§  We are done with Part II Probabilistic 
Reasoning 

§  To learn more (beyond scope of 188): 
§  Koller and Friedman, Probabilistic Graphical 

Models  (CS281A) 
§   Thrun, Burgard and Fox, Probabilistic 

Robotics  (CS287) 


