Lecture 17: HMMs and Particle Filtering

Pieter Abbeel --- UC Berkeley

Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew Moore

Reasoning over Time or Space

- Often, we want to reason about a sequence of observations
- Speech recognition
- Robot localization
- User attention
- Medical monitoring
- Need to introduce time (or space) into our models

Outline

- Markov Models
(= a particular Bayes net)
- Hidden Markov Models (HMMs)
- Representation
(= another particular Bayes net)
- Inference
- Forward algorithm (= variable elimination)
- Particle filtering (= likelihood weighting with some tweaks)
- Viterbi (= variable elimination, but replace sum by max
= graph search)
- Dynamic Bayes' Nets
- Representation
- (= yet another particular Bayes' net)
- Inference: forward algorithm and particle filtering

- Basic conditional independence:
- Past and future independent of the present
- Each time step only depends on the previous
- This is called the (first order) Markov property
- Note that the chain is just a (growing) BN
- We can always use generic BN reasoning on it if we truncate the chain at a fixed length

Markov Models

- A Markov model is a chain-structured BN
- Each node is identically distributed (stationarity)
- Value of X at a given time is called the state
- As a BN

$$
\begin{aligned}
& X\left(X_{1}\right) \rightarrow X_{2} \\
& P\left(X_{1}\right)\left.\rightarrow X_{4}\right) \\
& P\left(X_{t} \mid X_{t-1}\right)
\end{aligned}
$$

- Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities)
- Same as MDP transition model, but no choice of action

Query: $\mathrm{P}\left(\mathrm{X}_{4}\right)$

- Slow answer: inference by enumeration
- Enumerate all sequences of length t which end in s
- Add up their probabilities

$$
P\left(X_{4}\right)=\sum_{x_{1}, x_{2}, x_{3}} P\left(x_{1}, x_{2}, x_{3}, X_{4}\right)
$$

$=P\left(X_{1}=+x_{1}\right) P\left(X_{2}=+x_{2} \mid X_{1}=+x_{1}\right) P\left(X_{3}=+x_{3} \mid X_{2}=+x_{2}\right) P\left(X_{4} \mid X_{3}=+x_{3}\right)$ $+P\left(X_{1}=+x_{1}\right) P\left(X_{2}=+x_{2} \mid X_{1}=+x_{1}\right) P\left(X_{3}=-x_{3} \mid X_{2}=+x_{2}\right) P\left(X_{4} \mid X_{3}=-x_{3}\right)$ $+P\left(X_{1}=+x_{1}\right) P\left(X_{2}=-x_{2} \mid X_{1}=+x_{1}\right) P\left(X_{3}=+x_{3} \mid X_{2}=-x_{2}\right) P\left(X_{4} \mid X_{3}=+x_{3}\right)$ $+P\left(X_{1}=+x_{1}\right) P\left(X_{2}=-x_{2} \mid X_{1}=+x_{1}\right) P\left(X_{3}=-x_{3} \mid X_{2}=-x_{2}\right) P\left(X_{4} \mid X_{3}=-x_{3}\right)$ $+P\left(X_{1}=-x_{1}\right) P\left(X_{2}=+x_{2} \mid X_{1}=-x_{1}\right) P\left(X_{3}=+x_{3} \mid X_{2}=+x_{2}\right) P\left(X_{4} \mid X_{3}=+x_{3}\right)$ $+P\left(X_{1}=-x_{1}\right) P\left(X_{2}=+x_{2} \mid X_{1}=-x_{1}\right) P\left(X_{3}=-x_{3} \mid X_{2}=+x_{2}\right) P\left(X_{4} \mid X_{3}=-x_{3}\right)$ $+P\left(X_{1}=-x_{1}\right) P\left(X_{2}=-x_{2} \mid X_{1}=-x_{1}\right) P\left(X_{3}=-x_{3} \mid X_{2}=-x_{2}\right) P\left(X_{4} \mid X_{3}=-x_{3}\right)$ $+P\left(X_{1}=-x_{1}\right) P\left(X_{2}=-x_{2} \mid X_{1}=-x_{1}\right) P\left(X_{3}=-x_{3} \mid X_{2}=-x_{2}\right) P\left(X_{4} \mid X_{3}=-x_{3}\right)$

- = join on X_{1}, X_{2}, X_{3}, then sum over X_{1}, x_{2}, x_{3}

$X X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow X_{1}$
 Query: $\mathrm{P}\left(\mathrm{X}_{4}\right)$

- Fast answer: variable elimination
- Order: $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$

$$
\begin{aligned}
P\left(X_{4}\right) & =\sum_{x_{1}, x_{2}, x_{3}} P\left(x_{1}, x_{2}, x_{3}, X_{4}\right) \\
& =\sum_{x_{3}} \sum_{x_{2}} P\left(X_{4} \mid x_{3}\right) P\left(x_{3} \mid x_{2}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{1}\right) \\
& =\sum_{x_{3}} \sum_{x_{2}} P\left(X_{4} \mid x_{3}\right) P\left(x_{3} \mid x_{2}\right) \sum_{x_{1}} P\left(x_{2} \mid x_{1}\right) P\left(x_{1}\right) \\
& =\sum_{x_{3}} \sum_{x_{2}} P\left(X_{4} \mid x_{3}\right) P\left(x_{3} \mid x_{2}\right) P\left(x_{2}\right) \\
& =\sum_{x_{3}} P\left(X_{4} \mid x_{3}\right) \sum_{x_{2}} P\left(x_{3} \mid x_{2}\right) P\left(x_{2}\right) \\
& =\sum_{x_{3}} P\left(X_{4} \mid x_{3}\right) P\left(x_{3}\right) \\
& =P\left(X_{4}\right)
\end{aligned}
$$

Query P(X_t)

```
    \mp@subsup{X}{1}{}}->\mp@subsup{X}{2}{}->(\mp@subsup{X}{3}{})->(\mp@subsup{X}{4}{})-
    P( X ( ) P
```

- Variable elimination in order $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{t}-1}$ computes for $k=2,3, \ldots, t$
$P\left(x_{k}\right)=\sum_{x_{k-1}} P\left(x_{k} \mid x_{k-1}\right) P\left(x_{k-1}\right) \quad$ Forward simulation
= "mini-forward algorithm"
Note: common thread in this lecture: special cases of algorithms we already know, and they have a special name in the context of HMMs for historical reasons.

Application of Markov Chain Stationary Distribution: Web Link Analysis

- PageRank over a web graph
- Each web page is a state
- Initial distribution: uniform over pages
- Transitions:
- With prob. c, uniform jump to a
random page (dotted lines, not all shown)
With prob. 1-c, follow a random outlink (solid lines)
- Stationary distribution
- Will spend more time on highly reachable pages
- E.g. many ways to get to the Acrobat Reader download page
- Somewhat robust to link spam
- Google 1.0 returned the set of pages containing all your keywords in decreasing rank, now all search engines use link keywords in decreasing rank, now all search engines use link less important over time)

- Stationary distribution:
- Distribution we end up with is called the stationary distribution P_{∞} of the chain
- It satisfies

$$
P_{\infty}(X)=P_{\infty+1}(X)=\sum_{x} P_{t+1 \mid t}(X \mid x) P_{\infty}(x)
$$

Application of Markov Chain Stationary Distribution: Gibbs Sampling*

- Each joint instantiation over all hidden and query variables is a state. Let $\mathrm{X}=\mathrm{H}$ lunion Q
- Transitions:
- With probability $1 / n$ resample variable X_{i} according to $P\left(X_{j} \mid x_{1}, x_{2}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}, e_{1}, \cdots, e_{m}\right)$
- Stationary distribution:
- = conditional distribution $\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}} \mid \mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{m}}\right)$
\rightarrow When running Gibbs sampling long enough we get a sample from the desired distribution!

We did not prove this, all we did is stating this result.

Hidden Markov Models

- Markov chains not so useful for most agents
- Need observations to update your beliefs
- Hidden Markov models (HMMs)
- Underlying Markov chain over states S
- You observe outputs (effects) at each time step
- As a Bayes' net:

Outline

Markov Models
(= a particular Bayes net)

- Hidden Markov Models (HMMs)
- Representation
(= another particular Bayes net)
- Inference
- Forward algorithm (= variable elimination)
- Particle filtering (= likelihood weighting with some tweaks)
- Viterbi (= variable elimination, but replace sum by max = graph search)
- Dynamic Bayes' Nets
- Representation
- (= yet another particular Bayes' net)
- Inference: forward algorithm and particle filtering

Example

- An HMM is defined by:
- Initial distribution: $P\left(X_{1}\right)$
- Transitions: $\quad P\left(X \mid X_{-1}\right)$
- Emissions: $\quad P(E \mid X)$

Ghostbusters HMM

- $P\left(X_{1}\right)=$ uniform
- $P\left(X \mid X^{\prime}\right)=$ usually move clockwise, but sometimes move in a random direction or stay in place
- $P\left(R_{i j} \mid X\right)=$ same sensor model as before: red means close, green means far away.

$1 / 9$	$1 / 9$	$1 / 9$	
$1 / 9$	$1 / 9$	$1 / 9$	
$1 / 9$	$1 / 9$	$1 / 9$	
$P\left(X_{1}\right)$			

$1 / 6$	$1 / 6$	$1 / 2$
0	$1 / 6$	0
0	0	0

$\mathrm{P}\left(\mathrm{X} \mid \mathrm{X}^{\prime}=<1,2>\right)$

Conditional Independence

- HMMs have two important independence properties:
- Markov hidden process, future depends on past via the present
- Current observation independent of all else given current state

- Quiz: does this mean that evidence variables are quaranteed to be independent?
- [No, they tend to correlated by the hidden state]

Real HMM Examples

- Speech recognition HMMs:
- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
- Observations are words (tens of thousands)
- States are translation options
- Robot tracking:
- Observations are range readings (continuous)
- States are positions on a map (continuous)

Filtering / Monitoring

- Filtering, or monitoring, is the task of tracking the distribution $B_{t}(X)=P_{t}\left(X_{t} \mid e_{1}, \ldots, e_{t}\right)$ (the belief state) over time
- We start with $B_{1}(X)$ in an initial setting, usually uniform
- As time passes, or we get observations, we update $B(X)$
- The Kalman filter was invented in the 60's and first implemented as a method of trajectory estimation for the Apollo program

Lighter grey: was possible to get the reading, but less likely b/c required 1 mistake

Example: Robot Localization

Prob

$t=3$

Example: Robot Localization

Prob

$t=4$

Example: Robot Localization

Prob
0
$t=5$

The Forward Algorithm

- We are given evidence at each time and want to know

$$
B_{t}(X)=P\left(X_{t} \mid e_{1: t}\right)
$$

- We can derive the following updates

$$
=\sum_{x_{t-1}} P\left(x_{t-1}, x_{t}, e_{1: t}\right)
$$

$$
=\sum_{x_{t-1}} P\left(x_{t-1}, e_{1: t-1}\right) P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)
$$

$$
=P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) P\left(x_{t-1}, e_{1: t-1}\right)
$$

- = exactly variable elimination in order X_{1}, X_{2}, \ldots

Belief updates can also easily be derived down into two steps and with normalization

- Forward algorithm: $P\left(x_{t}, e_{1: t}\right)=P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) P\left(x_{t-1}, e_{1: t-1}\right)$
- Can break this down into:
- Time update: $\quad P\left(x_{t}, e_{1: t-1}\right)=\sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) P\left(x_{t-1}, e_{1: t-1}\right)$
- Observation update: $\quad P\left(x_{t}, e_{1: t}\right)=P\left(e_{t} \mid x_{t}\right) P\left(x_{t}, e_{1: t-1}\right)$
- Normalizing in the observation update gives:
- Time update: $\quad P\left(x_{t} \mid e_{1: t-1}\right)=\sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) P\left(x_{t-1} \mid e_{1: t-1}\right)$
- Observation update: $P\left(x_{t} \mid e_{1: t}\right) \propto P\left(e_{t} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t-1}\right)$
- Notation: $\quad B_{t}\left(x_{t}\right)=P\left(x_{t} \mid e_{1: t}\right), \quad B_{t}^{\prime}\left(x_{t}\right)=P\left(x_{t} \mid e_{1: t-1}\right)$
- Time update: $\quad B_{t}^{\prime}\left(x_{t}\right)=\sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) B_{t-1}\left(x_{t-1}\right)$
- Observation update: $B_{t}\left(x_{t}\right)=P\left(e_{t} \mid x_{t}\right) B_{t}^{\prime}\left(x_{t}\right)$ from basic probability
- Passage of Time
- Given: $P\left(X_{t}\right), P\left(X_{t+1} \mid X_{t}\right)$
- Query: $P\left(x_{t+1}\right) \forall x_{t+1}$

$$
\begin{aligned}
P\left(x_{t+1}\right) & =\sum_{x_{t}} P\left(x_{t}, x_{t+1}\right) \\
& =\sum_{x_{t}} P\left(x_{t}\right) P\left(x_{t+1} \mid x_{t}\right)
\end{aligned}
$$

- Observation
- Given: $P\left(X_{t+1}\right), P\left(e_{t+1} \mid X_{t+1}\right)$
- Query: $P\left(x_{t+1} \mid e_{t+1}\right) \forall x_{t+1}$

$$
=P\left(x_{t+1}\right) P\left(e_{t+1} \mid x_{t+1}\right)
$$

Example: Passage of Time

- As time passes, uncertainty "accumulates"

$\mathrm{T}=1$

$T=2$

$B^{\prime}\left(X^{\prime}\right)=\sum_{x} P\left(X^{\prime} \mid x\right) B(x)$

Transition model: ghosts usually go clockwise

Particle Filtering

- Filtering: approximate solution
- Sometimes $|\mathrm{X}|$ is too big to use exact inference
- $|X|$ may be too big to even store $B(X)$
- E.g. X is continuous
- Solution: approximate inference
- Track samples of X, not all values
- Samples are called particles
- Time per step is linear in the number of samples
- But: number needed may be large
- In memory: list of particles, not states
- This is how robot localization works in practice

- Particle is just new name for sample

Example: Observation

- As we get observations, beliefs get reweighted, uncertainty "decreases"

Before observation

After observation
$B(X) \propto P(e \mid X) B^{\prime}(X)$

Outline

Markov Models
(= a particular Bayes net)

- Hidden Markov Models (HMMs)
\checkmark Representation
(= another particular Bayes net)
- Inference

Forward algorithm (= variable elimination)

- Particle filtering (= likelihood weighting with some tweaks)
- Viterbi (= variable elimination, but replace sum by max = graph search)
- Dynamic Bayes' Nets
- Representation
- (= yet another particular Bayes' net)
- Inference: forward algorithm and particle filtering

Representation: Particles

- Our representation of $P(X)$ is now a list of N particles (samples)
- Generally, $\mathrm{N} \ll|\mathrm{X}|$
- Storing map from X to counts would defeat the point
- $P(x)$ approximated by number of particles with value x
- So, many x will have $P(x)=0$!
- More particles, more accuracy
- For now, all particles have a weight of 1

Particle Filtering: Elapse Time

- Each particle is moved by sampling its next position from the transition model

$$
x^{\prime}=\operatorname{sample}\left(P\left(X^{\prime} \mid x\right)\right)
$$

- This is like prior sampling samples' frequencies reflect the transition probs
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
- If enough samples, close to exact values before and after (consistent)

Particle Filtering: Observe

- Slightly trickier:
- Don't sample observation, fix it
- Similar to likelihood weighting downweight samples based on the evidence

$$
w(x)=P(e \mid x)
$$

$B(X) \propto P(e \mid X) B^{\prime}(X)$

- As before, the probabilities don't sum to one, since most have been downweighted (in fact they sum to an approximation of $\mathrm{P}(\mathrm{e})$)

Recap: Particle Filtering

- Particles: track samples of states rather than an explicit distribution

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from $t-1$

- Discrete valued dynamic Bayes nets are also HMMs

Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets
- Procedure: "unroll" the network for T time steps, then eliminate variables until $P\left(X_{T} \mid e_{1: T}\right)$ is computed

- Online belief updates: Eliminate all variables from the previous time step; store factors for current time only

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the $t=1$ Bayes net
- Example particle: $\mathbf{G}_{\mathbf{1}}{ }^{\mathbf{a}}=(3,3) \mathbf{G}_{\mathbf{1}}{ }^{\mathbf{b}}=(5,3)$
- Elapse time: Sample a successor for each particle
- Example successor: $\mathbf{G}_{\mathbf{2}}{ }^{\mathbf{a}}=(2,3) \mathbf{G}_{\mathbf{2}}{ }^{\mathbf{b}}=(6,3)$
- Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample
- Likelihood: $\mathrm{P}\left(\mathbf{E}_{1}{ }^{\mathbf{a}} \mid \mathbf{G}_{1}{ }^{\mathbf{a}}\right)^{*} \mathrm{P}\left(\mathbf{E}_{1}{ }^{\mathbf{b}} \mid \mathbf{G}_{1}{ }^{\mathbf{b}}\right)$
- Resample: Select prior samples (tuples of values) in proportion to their likelihood

Trick II to Improve Particle Filtering Performance: Regularization

- If no or little noise in transitions model, all particles will start to coincide
\rightarrow regularization: introduce additional (artificial) noise into the transition model
- Advantages:
- More systematic coverage of space of samples
- If all samples have same importance weight, no samples are lost
- Lower computational complexity

Trick I to Improve Particle Filtering Performance: Low Variance Resampling

ure 4.7 Principle of the low variance resampling procedure. We choose a random number r and then select those particles that correspond to $u=r+(m-1) \cdot M^{-1}$ where $m=1, \ldots, M$.

Robot Localization

- In robot localization:
- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store $B(X)$
- Particle filtering is a main technique
- Demos: global-floor.gif

SLAM

- SLAM = Simultaneous Localization And Mapping
- We do not know the map or our location
- State consists of position AND map!
- Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

P4: Ghostbusters 2.0 (beta)

- Plot: Pacman's grandfather, Grandpac, learned to hunt ghosts for sport.
- He was blinded by his power, but could hear the ghosts' banging and clanging.
- Transition Model: All ghosts move Transition Model: All ghosts move
randomly, but are sometimes biased
- Emission Model: Pacman knows a "noisy" distance to each ghost

- Query: most likely seq:

$$
\underset{x_{1: t}}{\arg \max } P\left(x_{1: t} \mid e_{1: t}\right)
$$

SLAM

- DEMOS
- Intel-lab-raw-odo.wmv
- Intel-lab-scan-matching.wmv
- visionSlam heliOffice.wmv

Outline

Markov Models
(= a particular Bayes net)

- Hidden Markov Models (HMMs)
\checkmark Representation
(= another particular Bayes net)
- Inference

Forward algorithm (= variable elimination)
Particle filtering (= likelihood weighting with some tweaks)

- Viterbi (= variable elimination, but replace sum by max = graph search)
Dynamic Bayes' Nets
- Representation
- (= yet another particular Bayes' net)
- Inference: forward algorithm and particle filtering

Best Explanation Query Solution Method 1: Search

$\arg \max P\left(x_{1: t} \mid e_{1: t}\right)=\arg \max \prod^{t} P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right) \quad \begin{aligned} & \text { sight abuse of notation } \\ & \text { assuming } \mathrm{P}\left(x_{1} \mid x_{0}\right)=\mathrm{P}\left(x_{t}\right)\end{aligned}$

$=\underset{x_{1: t}}{\arg \max } \sum_{i=1}^{t} \log \left(P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)\right)$

- States: $\left\{(),+x_{1},-x_{1},+x_{2},-x_{2}, \ldots,+x_{t},-x_{t}\right\}$
- Start state: ()
- Actions: in state x_{k}, choose any assignment for state $\mathrm{x}_{\mathrm{k}+1}$
- Cost: $\log \left(P\left(x_{k+1} \mid x_{k}\right) P\left(e_{k+1} \mid x_{k+1}\right)\right)$
- Goal test: goal $\left(x_{k}\right)=$ true iff $k==t$
\rightarrow Can run uniform cost graph search to find solution
\rightarrow Uniform cost graph search will take $\mathrm{O}\left(\mathrm{td}^{2}\right)$. Think about this!

```
Best Explanation Query Solution Method 2: Viterbi
Algorithm (= max-product version of forward algorithm)
    \(x_{1: T}^{*}=\underset{x_{1: T}}{\arg \max } P\left(x_{1: T} \mid e_{1: T}\right)=\underset{x_{1: T}}{\arg \max } P\left(x_{1: T}, e_{1: T}\right)\)
    \(m_{t}\left[x_{t}\right]=\max _{x_{1: t-1}} P\left(x_{1: t-1}, x_{t}, e_{1: t}\right)\)
        \(=\max _{x_{1: t-1}} P\left(x_{1: t-1}, e_{1: t-1}\right) P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)\)
        \(=P\left(e_{t} \mid x_{t}\right) \max _{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) \max _{x_{1: t-2}} P\left(x_{1: t-1}, e_{1: t-1}\right)\)
        \(=P\left(e_{t} \mid x_{t}\right) \max _{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) m_{t-1}\left[x_{t-1}\right]\)
Viterbi computational complexity: \(\mathrm{O}\left(\mathrm{t} \mathrm{d}^{2}\right)\)
Compare to forward algorithm:
\(P\left(x_{t}, e_{1: t}\right)=P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) P\left(x_{t-1}, e_{1: t-1}\right)\)
```


Further readings

- We are done with Part II Probabilistic Reasoning
- To learn more (beyond scope of 188):
- Koller and Friedman, Probabilistic Graphical Models (CS281A)
- Thrun, Burgard and Fox, Probabilistic Robotics (CS287)

