CS 188: Artificial Intelligence

First-Order Logic

Instructor: Stuart Russell

University of California, Berkeley
Spectrum of representations

(a) Atomic
Search, game-playing

(b) Factored
CSPs, planning, propositional logic, Bayes nets, neural nets

(b) Structured
First-order logic, databases, probabilistic programs
Expressive power

- **Rules of chess:**
 - 100,000 pages in propositional logic
 - 1 page in first-order logic

- **Rules of pacman:**
 - $\forall x, y, t \ \text{At}(x, y, t) \Leftrightarrow [\text{At}(x, y, t-1) \land \neg \exists \ u, v \ \text{Reachable}(x, y, u, v, \text{Action}(t-1))] \lor$
 $[\exists \ u, v \ \text{At}(u, v, t-1) \land \text{Reachable}(x, y, u, v, \text{Action}(t-1))]$
A possible world for FOL consists of:

- A non-empty set of objects
- For each k-ary predicate in the language, a set of k-tuples of objects (i.e., the set of tuples of objects that satisfy the predicate in this world)
- For each k-ary function in the language, a mapping from k-tuples of objects to objects
- For each constant symbol, a particular object (can think of constants as 0-ary functions)
Possible worlds

- A possible world for FOL consists of:
 - A non-empty set of objects
 - For each k-ary predicate in the language, a set of k-tuples of objects (i.e., the set of tuples of objects that satisfy the predicate in this world)
 - For each k-ary function in the language, a mapping from k-tuples of objects to objects
 - For each constant symbol, a particular object (can think of constants as 0-ary functions)

Knows(A, BFF(B))
A possible world for FOL consists of:
- A non-empty set of objects
- For each k-ary predicate in the language, a set of k-tuples of objects (i.e., the set of tuples of objects that satisfy the predicate in this world)
- For each k-ary function in the language, a mapping from k-tuples of objects to objects
- For each constant symbol, a particular object (can think of constants as 0-ary functions)

How many possible worlds?
Syntax and semantics: Terms

- A term refers to an object; it can be
 - A constant symbol, e.g., A, B, EvilKingJohn
 - The possible world fixes these referents
 - A function symbol with terms as arguments, e.g., BFF(EvilKingJohn)
 - The possible world specifies the value of the function, given the referents of the terms
 - BFF(EvilKingJohn) -> BFF(2) -> 3
 - A logical variable, e.g., x
 - (more later)
An atomic sentence is an elementary proposition (cf symbols in PL)

- A predicate symbol with terms as arguments, e.g., Knows(A,BFF(B))
 - True iff the objects referred to by the terms are in the relation referred to by the predicate
 - Knows(A,BFF(B)) -> Knows(1,BFF(2)) -> Knows(1,3) -> F

- An equality between terms, e.g., BFF(BFF(BFF(B)))=B
 - True iff the terms refer to the same objects
 - BFF(BFF(BFF(B)))=B -> BFF(BFF(BFF(2)))=2 -> BFF(BFF(3))=2 -> BFF(1)=2 -> 2=2 -> T
Syntax and semantics: Complex sentences

- Sentences with logical connectives
 \(\neg \alpha, \alpha \land \beta, \alpha \lor \beta, \alpha \Rightarrow \beta, \alpha \Leftrightarrow \beta \)

- Sentences with universal or existential quantifiers, e.g.,
 \(\forall x \text{ Knows}(x, \text{BFF}(x)) \)
 True in world \(w \) iff true in all extensions of \(w \) where \(x \) refers to an object in \(w \)
 - \(x \rightarrow 1: \text{Knows}(1, \text{BFF}(1)) \rightarrow \text{Knows}(1, 2) \rightarrow \text{T} \)
 - \(x \rightarrow 2: \text{Knows}(2, \text{BFF}(2)) \rightarrow \text{Knows}(2, 3) \rightarrow \text{T} \)
 - \(x \rightarrow 3: \text{Knows}(3, \text{BFF}(3)) \rightarrow \text{Knows}(3, 1) \rightarrow \text{F} \)
Syntax and semantics: Complex sentences

- Sentences with logical connectives
 \(\neg \alpha, \alpha \land \beta, \alpha \lor \beta, \alpha \Rightarrow \beta, \alpha \Leftrightarrow \beta \)

- Sentences with universal or existential quantifiers, e.g.,
 \[\exists x \text{ Knows}(x, \text{BFF}(x)) \]
 - True in world \(w \) iff true in *some extension* of \(w \) where \(x \) refers to an object in \(w \)
 - \(x \to 1: \text{Knows}(1, \text{BFF}(1)) \to \text{Knows}(1, 2) \to T \)
 - \(x \to 2: \text{Knows}(2, \text{BFF}(2)) \to \text{Knows}(2, 3) \to T \)
 - \(x \to 3: \text{Knows}(3, \text{BFF}(3)) \to \text{Knows}(3, 1) \to F \)
Fun with sentences

- Everyone knows President Obama
- There is someone that everyone knows
- Everyone knows someone
More fun with sentences

- Any two people of the same nationality speak a common language
Entailment is defined exactly as for PL:

- \(\alpha \models \beta \) ("\(\alpha \) entails \(\beta \)" or "\(\beta \) follows from \(\alpha \)"") iff in every world where \(\alpha \) is true, \(\beta \) is also true.
- E.g., \(\forall x \) Knows(x,Obama) entails \(\exists y \forall x \) Knows(x,y)

If asked “Do you know what time it is?”, it’s rude to say “Yes”

Similarly, given an existentially quantified query, it’s polite to provide an answer in the form of a substitution (or binding) for the variable(s):

- KB = \(\forall x \) Knows(x,Obama)
- Query = \(\exists y \forall x \) Knows(x,y)
- Answer = Yes, \(\{y/\text{Obama}\} \)

Applying the substitution should produce a sentence that is entailed by KB.
Inference in FOL: Propositionalization

- Convert $(KB \land \neg \alpha)$ to PL, use a PL SAT solver to check (un)satisfiability
 - Trick: replace variables with ground terms, convert atomic sentences to symbols
 - $\forall x \text{Knows}(x,\text{Obama}) \land \text{Democrat}(\text{Feinstein})$
 - $\text{Knows}(\text{Obama},\text{Obama}) \land \text{Knows}(\text{Feinstein},\text{Obama}) \land \text{Democrat}(\text{Feinstein})$
 - $K_{O,O} \land K_{F,O} \land D_F$
 - and $\forall x \text{Knows}(\text{Mother}(x),x)$
 - $\text{Knows}(\text{Obama},\text{Obama}) \land \text{Knows}(\text{Mother}(\text{Obama}),\text{Obama}) \land \text{Knows}(\text{Mother}(\text{Mother}(\text{Obama})),\text{Obama})$ ……
 - Real trick: for $k = 1$ to infinity, use terms of function nesting depth k
 - If entailed, will find a contradiction for some finite k; if not, may continue for ever; *semidecidable*
Inference in FOL: Lifted inference

- Apply inference rules directly to first-order sentences, e.g.,
 - KB = Person(Socrates), \(\forall x \text{ Person}(x) \Rightarrow \text{Mortal}(x) \)
 - conclude \(\text{Mortal}(\text{Socrates}) \)
 - The general rule is a version of Modus Ponens:
 - Given \(\alpha[x] \Rightarrow \beta[x] \) and \(\alpha' \), where \(\alpha'\sigma = \alpha[x]\sigma \) for some substitution \(\sigma \) conclude \(\beta[x]\sigma \)
 - \(\sigma \) is \{x/Socrates\}
 - Given Knows(x,Obama) and Knows(y,z) \(\Rightarrow \) Likes(y,z)
 - \(\sigma \) is \{y/x, z/Obama\}, conclude Likes(x,Obama)

- Examples: Prolog (backward chaining), Datalog (forward chaining), production rule systems (forward chaining), resolution theorem provers
FOL is a very expressive formal language

Many domains of common-sense and technical knowledge can be written in FOL (see AIMA Ch. 12)

- circuits, software, planning, law, network and security protocols, product descriptions, ecommerce transactions, geographical information systems, Google Knowledge Graph, Semantic Web, etc.

Inference is semidecidable in general; many problems are efficiently solvable in practice

Inference technology for logic programming is especially efficient (see AIMA Ch. 9)