
CS 188 Introduction to Artificial Intelligence
Spring 2021 Note 3

These lecture notes are heavily based on notes originally written by Henry Zhu. All figures are from Artificial
Intelligence: A Modern Approach.

A Knowledge Based Agent
Until now, we have essentially considered the task of learning to be one of association. To illustrate this,
imagine a dangerous world filled with lava, the only respite a far away oasis. We would like our agent to be
able to safely navigate from its current position to the oasis. In reinforcement learning, we assume that the
only guidance we can give is a reward function which will try to nudge the agent in the right direction, like
a game of ’hot or cold’. As the agent explores and collects more observations about the world, it gradually
learns to associate certain actions with positive future reward, and certain ones with undesirable, scalding
death. To this end, it may learn to recognize certain cues from the world and act accordingly, for example,
if it feels the air getting hot it should turn the other way and if it feels a cool breeze it should keep going.

However, we might consider an alternative strategy. Instead let’s tell the agent some facts about the world
and allow it to reason about what to do, based on the information at hand. If we told the agent that air
gets hot and hazy around pits of lava, or crisp and clean around bodies of water, then it could reasonably
infer what areas of the landscape are dangerous or welcome based on its readings of the atmosphere. This
alternative type of agent is known as a knowledge based agent. Such an agent maintains a knowledge
base, which is a collection of logical sentences, that encodes what we have told the agent and what it has
observed, and is able to perform logical inference in order to deduce further information from this.

The Language of Logic
Just as with any other language, logic sentences are written in a special syntax. Every logical sentence is
code for a proposition about a world that may or may not be true. For example the sentence "the floor is
lava" may be true in our agent’s world, but probably not true in ours. We can construct complex sentences
by stringing together simpler ones with logical connectives, to create sentences like "you can see all of
campus from the Big C and hiking is a healthy break from studying". There are five logical connectives in
the language:

• ¬, not: ¬P is true iff P is false. The atomic sentences P and ¬P are referred to as literals.

• ∧, and: A∧B is true iff both A is true and B is true. An ’and’ sentence is known as a conjunction and
its component propositions the conjuncts.

• ∨, or: A∨B is true iff either A is true or B is true. An ’or’ sentence is known as a disjunction and its
component propositions the disjuncts.

• ⇒, implication: A⇒ B is true unless A is true and B is false.

• ⇔ or ≡, biconditional: A⇔ B (A≡ B) is true iff either both A and B are true or both are false.

CS 188, Spring 2021, Note 3 1

Below are some useful logical equivalences, which can be used for simplifying sentences to forms that are
easier to work and reason with.

One particularly useful form is the conjunctive normal form or CNF which is is a conjunction of clauses,
each of which a disjunction of literals. It has the general form (P1∨ ·· · ∨Pi)∧ ·· · ∧ (Pj ∨ ·· · ∨Pn), i.e. it is
an ‘AND’ of ‘OR’s. As we’ll see, a sentence in this form is amenable to certain analyses, and importantly,
every logical sentence has a logically equivalent conjunctive normal form. This means that we can formulate
all the information contained in our knowledge base (which is just a conjunction of sentences) as one large
conjunctive normal form.

CNF representation is particularly important in propositional logic. Here we will see an example of convert-
ing a sentence to CNF representation. Assume we have the sentence A⇔ (B∨C) and we want to convert it
to CNF. The derivation is based on the rules in Figure 7.11.

1. Eliminate⇔: expression becomes (A⇒ (B∨C))∧ ((B∨C)⇒ A) using biconditional elimination.

2. Eliminate⇒: expression becomes (¬A∨B∨C)∧ (¬(B∨C)∨A) using implication elimination.

3. For CNF representation “nots" (¬) must appear only on literals. Using De Morgan’s rule we obtain
(¬A∨B∨C)∧ ((¬B∧¬C)∨A).

4. As a last step we apply the distributivity law and obtain (¬A∨B∨C)∧ (¬B∨A)∧ (¬C∨A).

The final expression is a conjunction of three OR clauses and hence it is in CNF form.

CS 188, Spring 2021, Note 3 2

Like other languages, logic has multiple dialects; we will introduce two. Propositional logic, is written
in sentences composed of proposition symbols, possibly joined by logical connectives. Each proposition
symbol stands for an atomic proposition about the world. A model is an assignment of true or false to all the
proposition symbols, which we might think of as a "possible world". For example, if we had the propositions
A = "today it rained" and B = "I forgot my umbrella" then the possible models (or "worlds") are:

1. {A=true, B=true} ("Today it rained and I forgot my umbrella.")

2. {A=true, B=false} ("Today it rained and I didn’t forget my umbrella.")

3. {A=false, B=true} ("Today it didn’t rain and I forgot my umbrella.")

4. {A=false, B=false} ("Today it didn’t rain and I did not forget my umbrella.")

In general, for N symbols, there are 2N possible models. We say a sentence is valid if it is true in all of these
models (e.g. the sentence True), satisfiable if there is at least one model in which it is true, and unsatisfiable
if it is not true in any models. For example, the sentence A∧B is satisfiable because it is true in model 1,
but not valid since it is false in models 2, 3, 4. On the other hand ¬A∧A is unjustifiable as no choice for A
returns True.

The second, first-order logic (FOL) , is more expressive, and uses objects as its basic components. With
first-order logic we can describe relationships between objects, as well as apply functions to them. Each
object is represented by a constant symbol, each relationship by a predicate symbol, and each function by
a function symbol. The following table summarizes the first order logic syntax.

CS 188, Spring 2021, Note 3 3

Terms in first-order logic are logical expressions that refer to an object. The simplest form of terms are
the constant symbols. However we don’t want to define distinct constant symbols for every possible object.
For example, if we want to refer to John’s left leg and Richard’s left leg, we can do so by using function
symbols like Le f tleg(John) and Le f tleg(Richard). Function symbols are just a complicated way to name
objects and not actual functions. Atomic sentences in first-order logic are descriptions of relationships
between objects, and are true if the relationship holds. Complex sentences of first order logic are analogous
to those in propositional logic and are atomic sentences sewn together by logical connectives. An example
of an atomic sentence is Brother(John,Richard) which is formed by a predicate symbol followed by a list
of terms inside the parentheses.

Naturally we would like ways to describe entire collections of objects. For this we use quantifiers. The
universal quantifier ∀, has the meaning “for all,” and the existential quantifier ∃, has the meaning “there
exists.” For example, if the set of objects in our world is debates, ∀a TwoSides(a) could be translated as
“there are two sides to every debate,” and if the set of objects in our world is people, ∀x,∃y, SoulMate(x,y)
as “for all people, there is someone out there who is their soulmate,” a.k.a. “everyone has a soulmate.” The
anonymous variables a,x,y are standins for objects, and can be substituted for actual objects, for example,
substituting {x/Laura} into our second example would result in a statement that “there is someone out there
for Laura.”

The universal and existential quantifiers are convenient ways to express a conjunction and disjunction over
all objects, and hence also obey De Morgan’s laws (note the analogous relationship between conjunctions
and disjunctions):

Finally, we use the equality symbol to signify that two symbols refer to the same object. For example, the in-
credible sentence (Wi f e(Einstein) = FirstCousin(Einstein)∧Wi f e(Einstein) = SecondCousin(Einstein))
is true!

Unlike with propositional logic, where a model was an assignment of true or false to all proposition symbols,
a model in first-order logic is a mapping of all constant symbols to objects, predicate symbols to relations
between objects, and function symbols to functions of objects. A sentence is true under a model if the rela-
tions described by the sentence are true under the mapping. While the number of models of a propositional
logical system is always finite, there may be an infinite number of models of a first order logical system if
the number of objects is unconstrained.

These two dialects of logic allow us to describe and think about the world in different ways. With proposi-
tional logic, we model our world as a set of attributes, that are true or false. Under this assumption, we can
represent a possible world as a vector, a 1 or 0 for every attribute. This binary view of the world is what is
known as a factored representation, which we used when we were solving CSP’s. With first-order logic,
our world consists of objects that relate to one another. The second object-oriented view of the world is
known as a structured representation, is in many ways more expressive and is more closely aligned with
the language we naturally use to speak about the world.

CS 188, Spring 2021, Note 3 4

Propositional Logical Inference
Logic is useful, and powerful, because it grants the ability to draw new conclusions from what we already
know. To define the problem of inference we first need to define some terminology.

We say that a sentence A entails another sentence B if in all models that A is true, B is as well, and we
represent this relationship as A |= B. Note that if A |= B then the models of A are a subset of the models of
B, (M(A)⊆M(B)). The inference problem can be formulated as figuring out whether KB |= q, where KB is
our knowledge base of logical sentences, and q is some query. For example, if Simin has avowed to never
set foot in Crossroads again, we could infer that we will not find her when looking for friends to sit with for
dinner.

We draw on two useful theorems to show entailment:

i.) (A |= B iff A⇒ B is valid).

Proving entailment by showing that A⇒ B is valid is known as a direct proof.

ii.) (A |= B iff A∧¬B is unsatisfiable).

Proving entailment by showing that A∧¬B is unsatisfiable is known as a proof by contradiction.

Model Checking
One simple algorithm for checking whether KB |= q is to enumerate all possible models, and to check if
in all the ones in which KB is true, q is true as well. This approach is known as model checking. For
a propositional logical system if there are N symbols, there are 2N models to check, and hence the time
complexity of this algorithm is O(2N), while in first-order logic, the number of models is infinite. In fact
the problem of propositional entailment is known to be co-NP-complete. While the worst case runtime will
inevitably be an exponential function of the size of the problem, there are algorithms that can in practice
terminate much more quickly. We will discuss two model checking algorithms for propositional logic.

The first, proposed by Davis, Putnam, Logemann, and Loveland (which we will call the DPLL algorithm)
is essentially a depth-first, backtracking search over possible models with three tricks to reduce excessive
backtracking. This algorithm aims to solve the satisfiability problem, i.e. given a sentence, find a working
assignment to all the symbols. As we mentioned, the problem of entailment can be reduced to one of satisfi-
ability (show that A∧¬B is not satisfiable), and specifically DPLL takes in a problem in CNF. Satisfiability
can be formulated as a constraint satisfaction problem as follows: let the variables (nodes) be the symbols,
and the constraints be the logical constraints imposed by the CNF. Then DPLL will procede just like back-
tracking search: continue assigning symbols truth values until either a satisfying model is found or a symbol
cannot be assigned without violating a logical constraint, at which point the algorithm will backtrack to the
last working assignment. However, DPLL makes three improvements over simple backtracking search:

1. Early Termination: A clause is true if any of the symbols are true. Therefore the sentence could be
known to be true even before all symbols are assigned. Also, a sentence is false if any single clause
is false. Early checking of whether the whole sentence can be judged true or false before all variables
are assigned can prevent unnecessary meandering down subtrees.

2. Pure Symbol Heuristic: A pure symbol is a symbol that only shows up in its positive or negative
form throughout the entire sentence. Pure symbols can immediately be assigned true or false. e.g. A
is the only pure symbol in (A∨B)∧ (¬B∨C)∧ (¬C∨A). , and can immediately be assigned true,
reducing the satisfying problem to one of just finding a satisfying assignment of (¬B∨C).

CS 188, Spring 2021, Note 3 5

3. Unit Clause Heuristic: A unit clause is a clause with just one literal or a disjunction with one literal
and many falses. In a unit clause, we can immediately assign a value to the literal, since there is only
one valid assignment. e.g. B must be true for the unit clause (B∨ f alse∨·· ·∨ f alse) to be true.

The second approach similarly formulates the entailment problem as a CSP, and finds a solution using local
search. This algorithm is known as Walk-SAT and involves randomly initializing all symbols and then
iteratively choosing an unsatisfied clause and choosing a symbol to "flip". The algorithm can either choose
the symbol that will result in the most number of satisfied clauses, or choose a symbol at random to avoid
getting stuck in local minima.

Theorem Proving
An alternate approach is to apply rules of inference to KB in order to prove that KB |= q. For example, if
our knowledge base contains A and A⇒ B then we can infer B (this rule is known as ModusPonens). The
two previously mentioned algorithms use the fact ii.) by writing A∧¬B in CNF and show that it is either
satisfiable or not.

We could also prove entailment using three rules of inference:

1. If our knowledge base contains A and A⇒ B we can infer B (Modus Ponens).

2. If our knowledge base contains A∧B we can infer A or B (And-Elimination).

3. If our knowledge base contains A and B we can infer A∧B (Resolution).

The last rule forms the basis of the resolution algorithm which iteratively applies it to the knowledge base
and to the newly inferred sentences until either q is inferred, in which case we have shown that KB |= q, or
there is nothing left to infer, in which case KB 6|= q. Although this algorithm is both sound (the answer will

CS 188, Spring 2021, Note 3 6

be correct) and complete (the answer will be found) it runs in worst case time that is exponential in the size
of the knowledge base.

However, in the special case that our knowledge base consists solely of literals and implications: (P1∧·· ·∧
Pn⇒ Q)≡ (¬P1∨·· ·∨¬P2∨Q), we can prove entailment in time linear to the size of the knowledge base.
One algorithm, forward chaining iterates through every implication statement in which the LHS is known
to be true, adding the RHS to the list of known facts. This is repeated until q is implied, or nothing more can
be inferred. Conversely, backward chaining finds an implication statement that implies q and recursively
tries prove each conjunct on the RHS, the base case being if the conjunct is already in the knowledge
base. We can think of forward chaining as an example of data-driven reasoning and backward chaining an
example of goal-oriented reasoning.

First Order Logical Inference
With first order logic we formulate inference exactly the same way. We’d like to find out if KB |= q, that is
if q is true in all models under which KB is true. One approach to finding a solution is propositionalization
or translating the problem into propositional logic so that it can be solved with techniques we have already
laid out. Each universal (existential) quantifier sentence can be converted to a conjunction (disjunction) of
sentences with a clause for each possible object that could be substituted in for the variable. Then, we can
use a SAT solver, like DPLL or Walk-SAT, (un)satisfiability of (KB∧¬q).

One problem with this approach is there are an infinite number of substitutions that we could make, since
there is no limit to how many times we can apply a function to a symbol. For example, we can nest the
function Classmate(· · ·Classmate(Classmate(Austen)) · · ·) as many times as we’d like, until we reference

CS 188, Spring 2021, Note 3 7

the whole school. Luckily, a theorem proved by Jacques Herbrand (1930) tells us that if a sentence is entailed
by a knowledge base that there is a proof involving just a finite subset of the propositionalized knowledge
base. Therefore, we can try iterating through finite subsets, specifically searching via iterative deepening
through nested function applications, i.e. first search through substitutions with constant symbols, then
substitutions with Classmate(Austen), then substitutions with Classmate(Classmate(Austen)), ...

Another approach is to directly do inference with first-order logic. Given (∀x HasAbsolutePower(x)∧
Person(x)⇒Corrupt(x))∧Person(John)∧HasAbsolutePower(John) ("absolute power corrupts absolutely")
we can infer Corrupt(John) by substituting x for John, {x/John}. This rule is known as Generalized
Modus Ponens. The forward chaining algorithm for first order logic repeatedly applies generalized Modus
Ponens and substitution to infer q or show that it cannot be inferred. Also just like with propositional logic,
the backward chaining algorithm recursively attempts to infer the premises (RHS) of O1 ∧ ·· · ∧O2 ⇒ q
through application of Generalized Modus Ponens and substitution.

Let’s look at an example. Let B = Price(BubbleTea), H = Price(MealAtHome), and T = Price(Takeout).
Given the axioms below, prove that H < B+T . Note that we freely rename variables to avoid substituting
different values for the same variable.

Axioms

(1) 0≤ B (2) H ≤ T
(3) ∀x, x≤ x (4) ∀x, x≤ x+0

(5) ∀x, x+0≤ x (6) ∀x,y, x+ y≤ y+ x
(7) ∀w,x,y,z, w≤ y∧ x≤ z⇒ w+ x≤ y+ z (8) ∀x,y,z, x≤ y∧ y≤ z⇒ x≤ z

Forward Chaining Proof

i. From (7) {w/0, y/B, x/H, z/T} infer that 0+H ≤ B+T .

ii. From (6) {y1/0, x1/H} infer that H +0≤ 0+H.

iii. From (4) {x2/H} infer that H ≤ H +0.

iv. From (8), (ii), (iii) {x3/H, y3/H+0, z3/0+H} infer that H ≤ 0+H.

v. From (8), (i), (iv) {x4/H, y4/0+H, z4/B+T} infer that H ≤ B+T .

Backward Chaining Proof

1. Goal: H ≤ B+T . From (8) and {x/H, z/B+T} derive two subgoals: H ≤ y1, y1≤ B+T .

(a) Goal: H ≤ y1. Resolve with (4) and substitution {y1/H+0}.

(b) Goal: H + 0 ≤ B + T . From (8) and {x2/H+0, z2/B+T} derive two subgoals: H + 0 ≤ y2,
y2≤ B+T .

i. Goal: H +0≤ y2. Resolve with (6) and substitution {y2/0+H, x3/H, y3/0}.
ii. Goal: 0+H ≤ B+ T . From (7) and substitution {w4/0, x4/H, y4/B, z4/T} derive two

subgoals: 0≤ B, H ≤ T .
A. Goal: 0≤ B. Resolve with (1).
B. Goal: H ≤ T . Resolve with (2).

CS 188, Spring 2021, Note 3 8

Logical Agents
Now that we understand how to formulate what we know and how to reason with it, we will talk about
how to incorporate the power of deduction into our agents. One obvious ability an agent should have is the
ability to figure out what state it is in, based on a history of observations and what it knows about the world
(state-estimation). For example, if we told the agent that the air starts to shimmer near pools of lava and it
observed that the air right before it is shimmering, it could infer that danger is nearby. In order to incorporate
its past observations into an estimate of where it currently is, an agent will need to have a notion of time,
and transitions between states. We call state attributes that vary with time fluents and write a fluent with an
index for time, e.g. Hott = the air is hot at time t. Fluents encompass time-dependent parts of the state and
actions at each time step and should remain constant over time, unless an action somehow disturbs its value.
To represent this fact we can use the general form of the successor-state axiom

F t+1⇔ ActionCausesF t ∨ (F t ∧¬ActionCausesNotF t)

In our world, the transition could be formulated as Hott+1⇔ StepCloseToLavat∨(Hott∧¬StepAwayFromLavat).

Having written out the rules of the world in logic, we can now formulate planning as satisfiability. Simply
construct a sentence including information about the initial state, the transitions (successor-state axioms),
and the goal (e.g. InOasisT ∧AliveT encodes the objective of surviving and ending up in the oasis by time
T). If the rules of the world have been properly formulated, then finding a satisfying assignment to all the
variables will allow us to extract a sequence of actions that will carry the agent to the goal.

Summary
In this note, we introduced the concept of logic which knowledge-based agents can use to reason about
the world and make decisions. We introduced the language of logic, its syntax and the standard logical
equivalences. Propositional logic is a simple language that is based on proposition symbols and logical con-
nectives. On the other hand, first-order logic is a representation language more powerful than propositional
logic. The syntax of first-order logic builds on that of propositional logic, using terms to represent objects
and universal and existential quantifiers to make assertions.

We further described the DPLL algorithm used to check satisfiability (SAT problem) in propositional logic
which is a depth-first enumeration of possible models, using early termination, pure symbol heuristic and
unit clause heuristic to improve performance. Backward and forward chaining algorithms can be used
for reasoning when our knowledge base consists solely of literals and implications in propositional logic.
Inference in first-order logic can be done directly by using rules like Generalized Modus Ponens or by
propositionalization, which translates the problem into propositional logic and uses a SAT solver to draw
conclusions.

CS 188, Spring 2021, Note 3 9

