
CS 188 Introduction to Artificial Intelligence
Spring 2021 Note 9

In this note we will cover the extension of logistic regression to multi-class classification and we will present
the family of gradient descent algorithms. Afterwards, we will cover the theory behind neural networks and
back-propagation.

Multi-Class Logistic Regression
In the previous set of notes we covered logistic regression for binary classification tasks where we use the
logistic function to obtain the output. The reason for that is that the output of the logistic function is bounded
between 0 and 1, and we want our model to capture the probability of a feature having a specific label. For
instance, after we have trained logistic regression, we obtain the output of the logistic function for a new
data point. If the value of the output is greater than 0.5 we classify it with label 1 and we classify it with
label 0 otherwise. More specifically, we model the probabilities as follows:

P(y =+1|f(x);w) =
1

1+ e−wT f(x)

and
P(y =−1|f(x);w) = 1− 1

1+ e−wT f(x) ,

where we use f(x) to denote the function (which often is the identity) of the feature vector x and the semi-
colon ; denotes that the probability is a function of the parameter weights w.

In multi-class logistic regression, we want to classify data points into K distinct categories. Thus, we want
to build a model that output estimates of the probabilities for a new data point to belong to each of the K
possible categories. For that reason we use the soft-max function σ(x) in place of the logistic function, and
we model the probability of a new data point with features x having label i as follows:

P(y = i|f(x);w) =
ewT

i f(x)

∑
K
k=1 ewT

k f(x)
.

Note that these probability estimates add up to one so they constitute a valid probability distribution. We
estimate the parameters w via maximizing the likelihood, i.e. we choose the parameters w that make our
data observations most “likely” to occur. Assume that we have observed n data points and their labels
xi,yi. The likelihood, which is defined as the joint probability distribution of our samples, is denoted with
`(w1, . . . ,wK) and is given by:

`(w1, . . . ,wK) =
n

∏
i=1

P(yi|f(xi);w).

To compute the values of the parameters wi that maximize the likelihood, we compute the gradient of
the likelihood function with respect to each parameter, set it equal to zero, and solve for the unknown

CS 188, Spring 2021, Note 9 1



parameters. If a closed form solution is not possible, we compute the gradient of the likelihood and we use
gradient ascent to obtain the optimal values.

A common trick we do to simplify these calculations is to first take the logarithm of the likelihood function
which will break the product into summations and simplify the gradient calculations. We can do this because
the logarithm is a strictly increasing function and the transformation will not affect the maximizers of the
function.

For the likelihood function we need a way to express the probabilities P(yi|f(xi);w) in which y∈ {1, . . . ,K}.
For that reason we define for each data point i, K parameters ti,k, k = 1, . . . ,K such that ti,k = 1 if yi = k and
0 otherwise. Hence, we can now express the likelihood as follows:

`(w1, . . . ,wK) =
n

∏
i=1

K

∏
k=1

(
ewT

k f(xi)

∑
K
`=1 ewT

` f(xi)

)ti,k

and we also obtain for the log-likelihood that:

log`(w1, . . . ,wK) =
n

∑
i=1

K

∑
k=1

ti,k log

(
ewT

k f(xi)

∑
K
`=1 ewT

` f(xi)

)

Now that we have an expression for the objective we must estimate the wis such that they maximize that
objective.

Gradient Ascent-Descent
We saw in the previous note in the linear regression method that we can derive a closed form solution for
the optimal weights by just differentiating the loss function and setting the gradient equal to zero. In general
though, we can expect that a closed form solution will not exist. In cases like that we have to use gradient
descent (if the objective is a loss function that we try to minimize) or gradient ascent (if the objective is
the log-likelihood which we try to maximize). The idea behind this is that the gradient points towards the
direction of steepest increase of the objective. We maximize a function by moving towards the steepest
ascent, and we minimize a function by moving towards the steepest descent direction. The pseudocode for
gradient ascent is as follows:

Algorithm 1 Gradient ascent
Randomly initialize w
while w not converged do

for each w j in w do
w j← w j +α∇w j log`(w))

end
end

where at the beginning we initialize the weights randomly. We denote the learning rate, which captures the
size of the steps we make towards the gradient direction, with α . For most functions in the machine learning
world it is hard to come up with an optimal value for the learning rate. In reality, we want a learning rate that

CS 188, Spring 2021, Note 9 2



is large enough so that we move fast towards the correct direction but at the same time small enough so that
the method does not diverge. A typical approach in machine learning literature is to start gradient descent
with a relatively large learning rate and reduce the learning rate as the number of iterations increases. If the
objective function we use to train our algorithm is a loss function then our goal is to decrease that objective
and hence we would implement gradient descent, which only differs from gradient ascent in that we follow
the opposite direction of the gradient.

Algorithm 2 Gradient descent
Randomly initialize w
while w not converged do

for each w j in w do
w j← w j−α∇w j loss(y,x,w)

end
end

In the example of the multi-class logistic regression the gradient with respect to w j is given by:

∇w j log`(w) =
n

∑
i=1

∇w j

K

∑
k=1

ti,k log

(
ewT

k f(xi)

∑
K
`=1 ewT

` f(xi)

)
=

n

∑
i=1

(
ti, j−

ewT
j f(xi)

∑
K
`=1 ewT

` f(xi)

)
f(xi),

where we used the fact that ∑k ti,k = 1.

If our dataset has a large number of n data points then computing the gradient as above in each iteration of the
gradient ascent algorithm might be too computationally intensive. As such, approaches like stochastic and
batch gradient ascent have been proposed. In stochastic gradient ascent at each iteration of the algorithm
we use only one data point to compute the gradient. That one data point is each time randomly sampled
form the dataset. Given that we only use one data point to estimate the gradient, stochastic gradient ascent
can lead to noisy gradients and thus make convergence a bit harder. Batch gradient ascent is a compromise
between stochastic and the ordinary gradient ascent algorithm as it uses a batch of size m of data points each
time to compute the gradients. The batch size m is a user specified parameter.

Neural Networks: Motivation
In what follows we will introduce the neural network methods. in doing so we will be using some of the
modeling techniques we developed for the binary logistic and multi-class logistic regression.

Non-linear Separators
We know how to construct a model that learns a linear boundary for binary classification tasks. This is a
powerful technique, and one that works well when the underlying optimal decision boundary is itself linear.
However, many practical problems involve the need for decision boundaries that are nonlinear in nature, and
our linear perceptron model isn’t expressive enough to capture this relationship.

Consider the following set of data:

CS 188, Spring 2021, Note 9 3



We would like to separate the two colors, and clearly there is no way this can be done in a single dimension
(a single dimensional decision boundary would be a point, separating the axis into two regions).
To fix this problem, we can add additional (potentially nonlinear) features to construct a decision boundary
from. Consider the same dataset with the addition of x2 as a feature:

With this additional piece of information, we are now able to construct a linear separator in the two di-
mensional space containing the points. In this case, we were able to fix the problem by mapping our data
to a higher dimensional space by manually adding useful features to data points. However, in many high-
dimensional problems, such as image classification, manually selecting features that are useful is a tedious
problem. This requires domain-specific effort and expertise, and works against the goal of generalization
across tasks. A natural desire is to learn these featurization or transformation functions as well, perhaps
using a nonlinear function class that is capable of representing a wider variety of functions.

Multi-layer Perceptron
Let’s examine how we can derive a more complex function from our original perceptron architecture. Con-
sider the following setup, a two-layer perceptron, which is a perceptron that takes as input the outputs of
another perceptron.

In fact, we can generalize this to an N-layer perceptron:

CS 188, Spring 2021, Note 9 4



With this additional structure and weights, we can express a much wider set of functions.

By increasing the complexity of our model, we in turn greatly increase its expressive power. Multi-layer
perceptrons give us a generic way to represent a much wider set of functions. In fact, a multi-layer percep-
tron is a universal function approximator and can represent any real function, leaving us only with the
problem of selecting the best set of weights to parameterize our network. This is formally stated below:

Theorem. (Universal Function Approximators) A two-layer neural network with a sufficient number
of neurons can approximate any continuous function to any desired accuracy.

Measuring Accuracy
The accuracy of the binary perceptron after making n predictions can be expressed as:

lacc(www) =
1
n

n

∑
i=1

(sgn(www · f(xi)) == yi)

where xi is data point i, w is our weight vector, f is our function that derives a feature vector from a raw data
point, and yi is the actual class label of xi. In this context, sgn(x) represents an indicator function, which
evaluates to 0 when x is negative, and 1 when x is positive. Taking this notation into account, we can note
that our accuracy function above is equivalent to dividing the total number of correct predictions by the raw
total number of predictions.

Sometimes, we want an output that is more expressive than a binary label. It then becomes useful to produce
a probability for each of the N classes we want to classify into, which reflects our a degree of certainty
that the data point belongs to each of the possible classes. To do so, as we did in the multi-class logistic
regression case, we transition from storing a single weight vector to storing a weight vector for each class
j, and estimate probabilities with the softmax function. The softmax function defines the probability of
classifying x(i) to class j as:

σ(xi) j =
ef(xi)

T w j

∑
N
`=1 ef(xi)T w`

= P(yi = j|f(xi);w).

Given a vector that is output by our function f , softmax performs normalization to output a probability
distribution. To come up with a general loss function for our models, we can use this probability distribution

CS 188, Spring 2021, Note 9 5



to generate an expression for the likelihood of a set of weights:

`(www) =
n

∏
i=1

P(yi|f(xi);w).

This expression denotes the likelihood of a particular set of weights explaining the observed labels and data
points. We would like to find the set of weights that maximizes this quantity. This is identical to finding the
maximum of the log-likelihood expression (since log is an increasing function, the maximizer of one will
be the maximizer of the other):

log`(www) = log
n

∏
i=1

P(yi|xi;www) =
n

∑
i=1

logP(yi|f(xi);w).

(Depending on the application, the formulation as a sum of log probabilities may be more useful – for
example in mini-batched or stochastic gradient descent; see the Neural Networks: Optimization section
below.). In the case where the log-likelihood is differentiable with respect to the weights, we will discuss a
simple algorithm to optimize it.

Multi-layer Feedforward Neural Networks
We now introduce the idea of an (artificial) neural network. This is much like the multi-layer perceptron,
however, we choose a different non-linearity to apply after the individual perceptron nodes. Note that it
is these added non-linearities that makes the network as a whole non-linear and more expressive (without
them, a multi-layer perceptron would simply be a composition of linear functions and hence also linear). In
the case of a multi-layer perceptron, we chose a step function:

f (x) =

{
1 if x≥ 0
−1 otherwise

Let’s take a look at its graph:

−2 −1 0 1 2

−1

−0.5

0

0.5

1

This is difficult to optimize for a number of reasons. Firstly, it is not continuous, and secondly, it has a
derivative of zero at all points. Intuitively, this means that we cannot know in which direction to look for a
local minima of the function, which makes it difficult to minimize loss in a smooth way.

Instead of using a step function like above, a better solution is to select a continuous function. We have
many options for such a function, including the sigmoid function (named for the Greek σ or ’s’ as it looks
like an ’s’) as well as the rectified linear unit (ReLU). Let’s look at their definitions and graphs below:

Sigmoid: σ(x) = 1
1+e−x

CS 188, Spring 2021, Note 9 6



−10 −5 0 5 10

0

0.2

0.4

0.6

0.8

1

ReLU: f (x) =

{
0 if x < 0
x if x≥ 0

−2 −1 0 1 2

0

0.5

1

1.5

2

Calculating the output of a multi-layer perceptron is done as before, with the difference that at the output
of each layer we now apply one of our new non-linearities (chosen as part of the architecture for the neural
network) instead of the initial indicator function. In practice, the choice of nonlinearity is a design choice
that typically requires some experimentation to select a good one for each individual use case.

Loss Functions and Multivariate Optimization
Now we have a sense of how a feed-forward neural network is constructed and makes its predictions, we
would like to develop a way to train it, iteratively improving its accuracy, similarly to how we did in the
case of the perceptron. In order to do so, we will need to be able to measure their performance. Returning
to our log-likelihood function that we wanted to maximize, we can derive an intuitive algorithm to optimize
our weights given that our function is differentiable.

To maximize our log-likelihood function, we differentiate it to obtain a gradient vector consisting of its
partial derivatives for each parameter:

∇w`(w) =

[
∂``(w)

∂w1
, ...,

∂``(w)

∂wn

]
.

CS 188, Spring 2021, Note 9 7



Now we can find the optimal values of the parameters using the gradient ascent method described earlier.
Given that the datasets are usually large, batch gradient ascent is the most popular variation of gradient
ascent in neural network optimization.

Neural networks are powerful (and universal!) function approximators, but can be difficult to design and
train. There’s a lot of ongoing research in deep learning focusing on various aspects of neural network
design such as :

1. Network Architectures - designing a network (choosing activation functions, number of layers, etc.)
that’s a good fit for a particular problem

2. Learning Algorithms - how to find parameters that achieve a low value of the loss function, a difficult
problem since gradient descent is a greedy algorithm and neural nets can have many local optima

3. Generalization and Transfer Learning - since neural nets have many parameters, it’s often easy to
overfit training data - how do you guarantee that they also have low loss on testing data you haven’t
seen before?

Neural Networks: Backpropagation
To efficiently calculate the gradients for each parameter in a neural network, we will use an algorithm known
as backpropagation. Backpropagation represents the neural network as a dependency graph of operators
and operands, called a computational graph, such as the one shown below:

2

x

3

y

+

g

4

z

∗

f

The graph structure allows us to efficiently compute both the network’s error (loss) on input data, as well as
the gradients of each parameter with respect to the loss. These gradients can be used in gradient descent to
adjust the network’s parameters and minimize the loss on the training data.

The Chain Rule
The chain rule is the fundamental rule from calculus which both motivates the usage of computation graphs
and allows for a computationally feasible backpropagation algorithm. Mathematically, it states that for a
variable f which is a function of n variables x1, . . . ,xn and each xi is a function of m variables t1, . . . , tm, then
we can compute the derivative of f with respect to any ti as follows:

CS 188, Spring 2021, Note 9 8



∂ f
∂ ti

=
∂ f
∂x1
· ∂x1

∂ ti
+

∂ f
∂x2
· ∂x2

∂ ti
+ . . .+

∂ f
∂xn
· ∂xn

∂ ti
.

In the context of computation graphs, this means that to compute the gradient of a given node ti with respect
to the output f , we take a sum of children(ti) terms.

The Backpropagation Algorithm

2

x

3

y

+

g

4

z

∗

f

2→
←4

3→
←4

5→
←4

4→
←

5

20→
←1

Figure 1: A computation graph for computing (x+ y)∗ z with the values x = 2, y = 3, z = 4.

Figure 1 shows an example computation graph for computing (x+ y)∗ z with the values x = 2, y = 3, z = 4.
We will write g = x+ y and f = g ∗ z. Values in green are the outputs of each node, which we compute in
the forward pass, where we apply each node’s operation to its input values coming from its parent nodes.

Values in red after each node give gradients of the function computed by the graph, which are computed in
the backward pass: the value after each node is the partial derivative of the last node f value with respect
to the variable at that node. For example, the red value 4 after g is ∂ f

∂g , and the red value 4 after x is ∂ f
∂x . In

our simple example, f is just a multiplication node which outputs the product of its two input operands, but
in a real neural network the final node will usually compute the loss value that we are trying to minimize.

The backward pass computes gradients by starting at the final node (which has a gradient of 1 since ∂ f
∂ f = 1)

and passing and updating gradients backward through the graph. Intuitively, each node’s gradient measures
how much a change in that node’s value contributes to a change in the final node’s value. This will be the
product of how much the node contributes to a change in its child node, with how much the child node con-
tributes to a change in the final node. Each node receives and combines gradients from its children, updates
this combined gradient based on the node’s inputs and the node’s operation, and then passes the updated
gradient backward to its parents. Computation graphs are a great way to visualize repeated application of
the chain rule from calculus, as this process is required for backpropagation in neural networks.

Our goal during backpropagation is to determine the gradient of output with respect to each of the inputs.
As you can see in Figure 1, in this case we want to compute the gradients ∂ f

∂x ,
∂ f
∂y , and ∂ f

∂ z :

1. Since f is our final node, it has gradient ∂ f
∂ f = 1. Then we compute the gradients for its children, g

and z. We have ∂ f
∂g = ∂

∂g(g · z) = z = 4, and ∂ f
∂ z = ∂

∂ z(g · z) = g = 5.

CS 188, Spring 2021, Note 9 9



2. Now we can move on upstream to compute the gradients of x and y. For these, we’ll use the chain
rule and reuse the gradient we just computed for g, ∂ f

∂g .

3. For x, we have ∂ f
∂x = ∂ f

∂g
∂g
∂x by the chain rule – the product of the gradient coming from g with the

partial derivative for x at this node. We have ∂g
∂x = ∂

∂x(x+ y) = ∂

∂x x+ ∂

∂x y = 1+0, so ∂ f
∂x = 4 ·1 = 4.

Intuitively, the amount that a change in x contributes to a change in f is the product of the amount that
a change in g contributes to a change in f , with the amount that a change in x contributes to one in g.

4. The process for computing the gradient of the output with respect to y is almost identical. For y
we have ∂ f

∂y = ∂ f
∂g

∂g
∂y by the chain rule – the product of the gradient coming from g with the partial

derivative for y at this node. We have ∂g
∂y = ∂

∂y(x+ y) = ∂

∂y x+ ∂

∂y y = 0+1, so ∂ f
∂y = 4 ·1 = 4.

Since the backward pass step for a node in general depends on the node’s inputs (which are computed in the
forward pass), and gradients computed “downstream” of the current node by the node’s children (computed
earlier in the backward pass), we cache all of these values in the graph for efficiency. Taken together, the
forward and backward pass over the graph make up the backpropagation algorithm.

2

x

3

y

+

h

∗
i

+

g

4

z

∗

f

2→
←16 ←4

←
12

3→
←12 ←8

←
4

5→←
4

6→
←

4

11→
←4

4→
←

11

44→
←1

Figure 2: A computation graph for computing ((x+ y)+(x · y)) · z, with x = 2, y = 3, z = 4.

For an example of applying the chain rule for a node with multiple children, consider the graph in Figure 2,
representing ((x+y)+(x ·y)) · z, with x = 2, y = 3, z = 4. x and y are each used in 2 operations, and so each
has two children. By the chain rule, their gradient values are the sum of the gradients computed for them
by their children (i.e. gradient values add at path junctions). For example, to compute the gradient for x, we
have

∂ f
∂x

=
∂ f
∂h

∂h
∂x

+
∂ f
∂ i

∂ i
∂x

= 4 ·1+4 ·3 = 4+12 = 16.

CS 188, Spring 2021, Note 9 10


