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Where to start?

We live in a world of pervasive inequality, oppression, and discrimination.

As we use machine learning to formalize, scale, accelerate processes in this world, 
we run danger of perpetuating existing patterns of injustice.

But there’s also a (somewhat fragile) opportunity to revisit decision making in 
various domains and reform existing processes for the better.



Important work to start with

Ruha Benjamin. Race After Technology: Abolitionist Tools for the New Jim Code

Meredith Broussard. Artificial Unintelligence: How Computers Misunderstand the World

Virginia Eubanks. Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor

Safiya Noble. Algorithms of Oppression: How Search Engines Reinforce Racism

Cathy O’Neil. Weapons of math destruction

Joy Boulamwini, Kate Crawford, Timnit Gebru, Latanya Sweeney, Meredith Whitaker and many 
others.



“the New Jim Code”: the 
employment of new technologies 
that reflect and reproduce existing 
inequities but that are promoted and 
perceived as more objective or 
progressive than the discriminatory 
systems of a previous era. 

- Ruha Benjamin



Focus for this tutorial

Discrimination in consequential decision making settings

This excludes many other forms of injustice (and even unfairness)

US centric perspective (insofar as the examples and legal backdrop go)

Formal models and frameworks

This is not meant to decenter the scholarship just mentioned

This decidedly leaves room for non-technical interventions 



Our concern is with unjustified basis for differentiation

● Practical irrelevance
○ Sexual orientation in employment decisions

● Moral irrelevance
○ Disability status in hiring decisions

Is discrimination not the point of machine learning?



Discrimination is not a general concept

Domain specific: 

Concerned with important opportunities that affect people’s lives

Group specific: 

Concerned with socially salient categories that have served as the basis for 
unjustified and systematically adverse treatment in the past



Regulated domains (based on US law)

● Credit (Equal Credit Opportunity Act)
● Education (Civil Rights Act of 1964; Education Amendments of 1972)
● Employment (Civil Rights Act of 1964)
● Housing (Fair Housing Act)
● ‘Public Accommodation’ (Civil Rights Act of 1964)

Extends to marketing and advertising; not limited to final decision

This list sets aside complex web of laws that regulates the government



Legally recognized ‘protected classes’ in the US

Race (Civil Rights Act of 1964); Color (Civil Rights Act of 1964); Sex (Equal Pay Act 
of 1963; Civil Rights Act of 1964); Religion (Civil Rights Act of 1964); National 
origin (Civil Rights Act of 1964); Citizenship (Immigration Reform and Control 
Act); Age (Age Discrimination in Employment Act of 1967); Pregnancy (Pregnancy 
Discrimination Act); Familial status (Civil Rights Act of 1968); Disability status 
(Rehabilitation Act of 1973; Americans with Disabilities Act of 1990); Veteran 
status (Vietnam Era Veterans' Readjustment Assistance Act of 1974; Uniformed 
Services Employment and Reemployment Rights Act); Genetic information 
(Genetic Information Nondiscrimination Act) 



Source: Washington Post
June 15, 2020



Two legal doctrines in the US

Disparate treatment

Purposeful consideration of group 
membership

Intentional discrimination without 
consideration of group membership

Goal: Procedural fairness

Disparate impact

Avoidable or unjustified harm, 
possibly indirect

Goal: Distributive justice, minimize 
differences in outcomes

Some well-recognized tension between the two.



Some caveats about the law

Anti-discrimination law does not reflect one moral theory

Legislations often were responses to civil rights movements, each hard fought 
through decades of activism

The law does not give us a “fairness definition” that we could readily formalize and 
operationalize



The failure of fairness through unawareness

Removing (or not including) “sensitive attributes” is no cure 
for fairness concerns and can exacerbate them.



Amazon same-day delivery coverage

Source: https://www.bloomberg.com/graphics/2016-amazon-same-day/

https://www.bloomberg.com/graphics/2016-amazon-same-day/




The failure of fairness through unawareness

Perhaps Amazon was just predicting number of purchases, which correlates with 
affluence, which correlates with race in the United States. Amazon almost certainly  
did not look at their customers’ race when they built this product.



“We don’t consider that 
in our data” is never a 
valid argument.



So what should we do 
instead?



Overview

Part I (today): From a narrower perspective

Fairness criteria in classification

Part II (Thu): Toward a broader perspective

Causal models of decision-making settings

Dynamic models of socio-technical systems



Part I

 



Formal work on fairness in classification and decision-making

Pioneering work in educational testing (Cleary 1968) and economics (Becker 
1957, Phelps 1972, Arrow 1973) on the heels of civil rights movement.

Computer science: Mostly post 2010, explosive increase in work since 2016

Why today? Urgency, scale, reach, and impact of algorithmic decisions

Machine learning fuels adoption and motivates some new technical problems, but 
also forces us to revisit fundamental normative questions 



Formal prediction and decision making setting

Data described by covariates X

Outcome variable Y (often binary, sometimes called target variable) 

Our goal is to predict Y from X

Use supervised machine learning to produce a score function R = r(X)

Make binary decisions according to threshold rule D = 1{R > t}

Note: Think of these as random variables in the same probability space.



Where do score functions come from
Score R could be:

● Based on parametric model of the data (X, Y), e.g. likelihood ratio test 
● Non-parametric score, such as, Bayes optimal score  R = E[ Y | X ]
● Most commonly, learned from labeled data using supervised learning



Decision theory 101

True 
negative

False 
positive

False 
negative

True 
positive

Decision D

O
ut

co
m

e 
Y

0

0
1

1

True positive rate = Pr[D = 1 | Y = 1]

False positive rate = Pr[D = 1 | Y = 0]

True negative rate = Pr[D = 0 | Y = 0]

False negative rate = Pr[D = 0 | Y = 1]



Statistical fairness criteria

Introduce additional random variable A encoding membership status in a 
protected class

Equalize different statistical quantities involving group membership A 

Idea dates back at least to the 1960s with work of Anne Cleary about group 
differences in educational testing*

We’ll review three common criteria

* See Hutchinson, Mitchell (2018). 



Equalizing acceptance rate

Equal positive rate: For any two groups a, b, require
Pr[D = 1 | A = a]  = Pr[D = 1 | A = b]

“Acceptance rate” equal in all groups

Generalization: Require D to be independent of A (Independence)

All sorts of variants, relaxations, equivalent formulations



Why this does not rule out unfair practices

One unfair situation: Make good/informed decisions in one group, poor/arbitrary 
decisions in other groups. Equalize positive rate.

This can happen on its own if we have less data or poor data in one group.

Example: Old Framingham risk score for coronary heart disease was created on 
cohort of white men, then used for other patients.

A positive call could be a false positive or a true positive. Moral intuition: You 
shouldn’t get to match true positives in one group with false positives in another.



Achieving independence through representation learning

Lots of work out there on “fair representation” 
starting with work by Zemel et al. (2015).

General idea: Use deep learning tricks, such as 
adversarial learning, to train a representation of the 
data that is independent of group membership A, 
while representing original data as well as possible. 

X
Z

Z ⟂ A



Equalizing error rates

For any two groups a, b, require
Pr[D = 1 |  Y = 0, A = a]  = Pr[D = 1 | Y = 0, A = b] (equal false positive rate)
Pr[D = 0 |  Y = 1, A = a]  = Pr[D = 0 | Y = 1, A = b] (equal false negative rate)

Generalization: Require D to be independent of A given Y

Also makes sense for score: Require R to be independent of A given Y



Error rate parity is a post-hoc criterion

At decision time, the decision maker doesn’t know who is a positive/negative 
instance

In hindsight, somebody can collect a group of positive instances and a group of 
negative instances and check how they were classified.

Group differences in this kind of post-hoc “audit” often strike people as unfair.



Interpretation in terms of ROC curve

False positive rate
Tr

ue
 p

os
iti

ve
 ra

te

1

10

Group b

Suppose D is threshold of a 
score R

Error rate parity implies that 
ROC curve of score 
conditional on group must be 
under all curves.
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Interpretation in terms of ROC curve
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Column-wise criteria?

We could equalize expressions of the form 
Pr[Y = y |  D = d, A = a]

These are called “column-wise” rates, i.e., false 
omission and false discovery rate.

Nothing wrong with this, but something closely 
related but different is more common.
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Calibration

A score R is calibrated if: Pr[Y = 1 |  R = r] = r

“You can pretend score is a probability” - although it may not actually be one!

Score value r corresponds to positive outcome rate r

Calibration by group: Pr[Y = y |  R = r, A = a] = r

Follows from: Y independent of A conditional on R



Calibration is an a priori guarantee

The decision maker sees the score value r and knows based on this what the 
frequency of positive outcomes is.

E.g., score 0.8 means 80% rate of heart failure on average over people who receive 
score 0.8.

This guarantee (usually) does not hold at the individual level, e.g., “Mary’s 
individual risk of heart failure is 80%.”



Group calibration often follows from unconstrained learning

Informal theorem: Under reasonable 
conditions, the deviation from satisfying 
group calibration is upper bounded by the 
excess risk of the learned score relative to 
the Bayes optimal score function.

See Liu, Simchowitz, H (2019)

In other words, you shouldn’t be surprised to 
see calibration follow approximately from 
unconstrained supervised learning.

Example calibration of unconstrained 
learning on UCI adult data set.



Subgroup fairness

Ensuring fairness criteria between two 
groups can lead to violations within 
groups.

This motivated work on ensuring 
subgroup fairness.

See Kearns, Neel, Roth, Wu (2018), and 
Hébert-Johnson, Kim, Reingold, 
Rothblum (2018).

Illustrative example 
from Kearns et al. (2018)



Recap

We saw three criteria:

● R independent of A (implies equal acceptance rate)

● R independent of A conditional on Y (implies equal error rates)

● Y independent of A conditional on R (implies calibration by group)

Can we have them all?



Incompatibility results

Informal theorem: Any two of these 
criteria are mutually exclusive in general.



Error rate parity vs calibration

Theorem: 
1. Assume unequal base rates: Pr[Y = 1 |  A = a] ≠ Pr[Y = 1 |  A = b]
2. Assume imperfect decision rule: D has nonzero error rates

Then, calibration by group implies that error rate parity fails.

Related result due to Chouldechova (2016), Kleinberg, 
Mullainathan, Raghavan (2017)





Essence of COMPAS debate

There’s a risk score used, called COMPAS, used by many jurisdictions in the United 
States to assess “risk of recidivism”. Judges may detain defendant in part based 
on this score.

ProPublica: Black defendants face higher false positive rate, i.e., more Black 
defendants labeled “high risk” end up not committing a crime upon release than 
among Whites labeled “high risk”

COMPAS maker Northpointe: But our scores are calibrated by group and Black 
defendants have a higher recidivism rate! Hence, this is unavoidable.



A first word of caution about COMPAS debate

Neither error rate parity nor calibration rule out blatantly 
unfair practices.

What’s fair in criminal justice is not settled by appeal to one 
or the other criterion.

These properties are not meant to be “fairness certificates”.



Consider these two groups

Detention rate False pos. rate

38% 25%

61% 42%

Detain everyone 
above 0.5



Equalizing rates may lead to undesired outcomes

Arrest more low 
risk individuals 
in orange group!

Detention rate False pos. rate

38% 25%

61% 42% 42% 26%



An issue with calibration

True probabilities of reoffending
(hypothetically, suppose we know them!)

Detain everyone 
above 0.5

Examples from: Corbett-Davies, Pierson, Feller, Goel, Huq (2017) 

https://arxiv.org/abs/1701.08230


An issue with calibration

Average probability of re-offense is 0.4 in 
this subgroup

Calibrated new scores

No one is 
detained!



Is prediction too narrow a perspective?

Scholarly debate around COMPAS was largely about tension 
between fairness criteria.

Some rightfully point out data and measurement problems
(e.g., policing patterns influence variables such as criminal history and recidivism)

When is the issue not how we predict but that we predict?



Failure to appear in court

One approach: Predict failure to appear, jail if risk is high.

Alternative: Recognize that people fail to appear in court 
due to lack of child care and transportation, work schedules, or too many court 
appointments. Implement steps to mitigate these issues.

Alternative is part of the Harris County Lawsuit settlement: "require Harris County to 
provide free child care at courthouses, develop a two-way communication system between courts and 
defendants, give cell phones to poor defendants and pay for public transit or ride share services for 
defendants without access to transportation to court." (Source: Houston Chronicle, April 2019)

https://www.houstonchronicle.com/news/houston-texas/houston/article/Proposed-bail-lawsuit-settlement-includes-child-13764225.php


Toward a broader perspective

Statistical fairness criteria take data generating distribution as given and work 
with nothing but the joint statistics of (X, Y, R, A). 

If this statistical perspective is too narrow, how do we take salient social facts and 
context into account?

This will be the subject of Part II on Thursday.



Wrapping up

Fairness through unawareness fails!

Violations of fairness criteria trigger valid moral intuitions, and can surface 
normative questions about decision-making, as well as trade-offs and tensions 
between different interpretations of fairness.

However, statistical fairness criteria on their own cannot be a “proof of fairness”.

Nor are fairness criteria on their own a good objective function.



Background reading

A textbook in progress (mostly available online):

Barocas, H, Narayanan. Fairness and Machine Learning: Limitations and 
Opportunities. fairmlbook.org

Today’s lecture roughly corresponds to Chapters 1 & 2.

https://fairmlbook.org/

