Agents and environments
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= An agent perceives its environment through sensors and acts upon
it through actuators (or effectors, depending on whom you ask)



A human agent in Pacman
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The task environment - PEAS

= Performance measure

= -] per step; + 10 food; +500 win; -500 die;
+200 hit scared ghost

= Environment

= Pacman dynamics (incl ghost behavior)
= Actuators

= | eft Right Up Down or NSEW

= Sensors
= Entire state is visible (except power pellet duration)

SCORE: 18




PEAS: Automated taxi

= Performance measure

= Income, happy customer, vehicle costs,
fines, insurance premiums

= Environment

= US streets, other drivers, customers,
weather, police...

= Actuators
= Steering, brake, gas, display/speaker

= Sensors

= Camera, radar, accelerometer, engine

. | :
sensors, microphone, GPS nest

http://nypost.com/2014/06/21/how-google-might-



PEAS: Medical diagnosis system

* Performance measure
= Patient health, cost, reputation

= Environment
= Patients, medical staff, insurers, courts

= Actuators

= Screen display, email

= Sensors
= Keyboard/mouse
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Environment types

Fully or partially observable
Single-agent or multiagent
Deterministic or stochastic
Static or dynamic

Discrete or continuous
Known physics?

Known perf. measure?



Agent design

= The environment type largely determines the agent design
= Partially observable => agent requires memory (internal state)
» Stochastic => agent may have to prepare for contingencies
» Multi-agent => agent may need to behave randomly
» Static => agent has time to compute a rational decision
» Continuous time => continuously operating controller
» Unknown physics => need for exploration
» Unknown perf. measure => observe/interact with human principal



Simple reflex agents
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Pacman agent in Python

class GoWestAgent(Agent):

def getAction(self, percept):
if Directions.WEST in percept.getLegalPacmanActions():
return Directions.WEST
else:
return Directions.STOP



Eat adjacent dot, if any




Eat adjacent dot, if any




Pacman agent contd.

= Can we (in principle) extend this reflex agent to behave well in all
standard Pacman environments?
= No — Pacman is not quite fully observable (power pellet duration)
= Otherwise, yes — we can (in principle) make a lookup table.....

= How large would it be?



Reflex agents with state
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Goal-based agents
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Spectrum of representations
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Summary

= An agent interacts with an environment through sensors and
actuators

= The agent function, implemented by an agent program running on a
machine, describes what the agent does in all circumstances

= Rational agents choose actions that maximize their expected utility

= PEAS descriptions define task environments; precise PEAS
specifications are essential and strongly influence agent designs

= More difficult environments require more complex agent designs and
more sophisticated representations



CS 188: Artificial Intelligence

Search

Instructors: Stuart Russell and Dawn Song

University of California, Berkeley

[slides adapted from Dan Klein, Pieter Abbeel]



Today

= Agents that Plan Ahead

= Search Problems

» Uninformed Search Methods
= Depth-First Search
= Breadth-First Search

» Uniform-Cost Search




Planning Agents

Planning agents decide based on evaluating
future action sequences

Must have a model of how the world
evolves in response to actions

Usually have a definite goal
Optimal: Achieve goal at least cost




Move to nearest dot and eat it
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Precompute optimal plan, execute it
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Search Problems




Search Problems

= A search problem consists of:

e [T-T]' T

An initial state s

Actions A(s) in each state u

Transition model Result(s,a) K

A goal test G(s) E - !
= S has no dots left

Action cost c¢(s,a,s’)
= +1 per step; -10 food; -500 win; +500 die; -200 eat ghost

= A solution is an action sequence that reaches a goal state
= An optimal solution has least cost among all solutions



Search Problems Are Models




Example: Traveling in Romania




But then...

Bucharest to London
@ Lufthansa « Tue, Jan 26

7:10am - 4:45pm
11h 35m (1 stop)
7h 15m in Frankfurt (FRA)

Show details




Example: Traveling in Romania

99 Fagaras

Oradea
71
75 151
Arad
Sibiu
118
80
Timisoara
1l Lugoj
70
Mehadia
75
Drobeta 120

Rimnicu Vilcea

Pitesti

Craiova

Neamt
87
Tasi
92
Vaslui
211 142
98 .
5 +— . Hirsova
Urziceni
86
Bucharest
90
Giurgiu Eforie

= State space:

= Cities
Initial state:
= Arad

Actions:
= Go to adjacent city

Transition model:

= Reach adjacent city
Goal test:

= s =Bucharest?
Action cost:

» Road distance from sto s’

Solution?



Models are almost always wrong




Models are almost always wrong
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What’s in a State Space?

The world state includes every last detail of the environment

SCORE:

A search state keeps only the details needed for planning (abstraction)

= Problem: Pathing
= States: (x,y) location
= Actions: NSEW
= Transition: update x,y value
= Goal test: is (x,y)=destination

= Problem: Eat-All-Dots

States: {(x,y), dot Booleans}
Actions: NSEW

Transition: update x,y and
possibly a dot Boolean

Goal test: dots all false



State Space Sizes

= World state:
= Agent positions: 120
= Food count: 30

= Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(23%)x(12%)x4
= States for pathing?
120
= States for eat-all-dots?
120x(239)




State Space Graphs and Search Trees



State Space Graphs

= State space graph: A mathematical
representation of a search problem
= Nodes are (abstracted) world configurations
= Arcs represent transitions (labeled with actions)
= The goal test is a set of goal nodes (maybe only one)

= |n a state space graph, each state occurs only
once!

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea




State Space Graphs

= State space graph: A mathematical
representation of a search problem e
= Nodes are (abstracted) world configurations @ e

= Arcs represent successors (action results)

= The goal test is a set of goal nodes (maybe only one) \Qj% a
= |n a state space graph, each state occurs only @ 6 a
once!

Tiny state space graph for a tiny

= We can rarely build this full graph in memory search problem

(it’s too big), but it’s a useful idea



State Space Graphs vs. Search Trees
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Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

X0




Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?
/N
a b
o ORNANWA
b G a G
AN N\
a/ G Ié G

/N /N

Important: Those who don’t know history are doomed to repeat it!



Quiz: State Space Graphs vs. Search Trees

Consider a rectangular grid: How many states within d steps of start?

How many states in search tree of depth d?




Tree Search



Search Example: Romania

Oradea
71
Neamt
87
75 151
Tasi
Arad
. 92
Sibiu 99 Fagaras
. | Vaslui
80
Timisoara Rimnicu Vilcea
142
. . 211
111 Lugoj Pitesti
70 98
. 5 Hirsuva
Mehadia 101 “ Urziceni
86
73 Bucharest
Drobeta 120
90

Craiova Giursiu Eforie




Creating the search tree
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Creating the search tree
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Creating the search tree
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General Tree Search

function TREE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

= Main variations:
= Which leaf node to expand next
= Whether to check for repeated states
= Data structures for frontier, expanded nodes




Systematic search

frontier

reached =
unexplored ded expanded U frontier
expande

1. Frontier separates expanded from unexplored region of state-space graph
2. Expanding a frontier node:

a. Moves a node from frontier into expanded

b. Adds nodes from unexplored into frontier, maintaining property 1



Depth-First Search




Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack




Search Algorithm Properties




Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?

: 4
Space complexity? 1 node
b nodes
2
Cartoon of search tree: b® nodes
» b is the branching factor m tiers <
= mis the maximum depth
= solutions at various depths
b™ nodes

Number of nodes in entire tree?
= 1+b+b*+....6M=0(b™)



Depth-First Search (DFS) Properties

= What nodes does DFS expand?

= Some left prefix of the tree down to depth m. 1 node
= Could process the whole tree! b nodes
= If mis finite, takes time O(b") b2 nodes
: m tiers
= How much space does the frontier take? <
= Only has siblings on path to root, so O(bm)
= |s it complete? b™ nodes

= m could be infinite
= preventing cycles may help (more later)

= |s it optimal?
= No, it finds the “leftmost” solution, regardless
of depth or cost



Breadth-First Search




Strategy: expand a
shallowest node first

Implementation:
Frontier is a FIFO queue

Breadth-First Search

Search

Tiers




Breadth-First Search (BFS) Properties

= What nodes does BFS expand? .

= Processes all nodes above shallowest solution b 7 node

= Let depth of shallowest solution be s _ b nodes

= Search takes time O(b°) stiers < / b2 nodes
= How much space does the frontier take? N / ~\ b® nodes

= Has roughly the last tier, so O(b°) -

@,
b™ nodes

= |s it complete?
M)
»= s must be finite if a solution exists, so yes! ~

» |s it optimal?
= |f costs are equal (e.g., 1)



Quiz: DFS vs BFS




Quiz: DFS vs BFS

= When will BFS outperform DFS?

= When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]



Example: Maze Water DFS/BFS (part 1)




Example: Maze Water DFS/BFS (part 2)




Iterative Deepening

= |dea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages
= Run a DFS with depth limit 1. If no solution...
= Run a DFS with depth limit 2. If no solution...
= Run a DFS with depth limit 3. .....

= |sn’t that wastefully redundant? /

= Generally most work happens in the lowest
level searched, so not so bad!



Uniform Cost Search




g(n) = cost from root to n

Strategy: expand lowest g(n)

Uniform Cost Search
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Frontier is a priority queue @ 8 1
sorted by g(n) 1 @ @ ﬁ
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Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?

= Processes all nodes with cost less than cheapest solution!

= |f that solution costs C* and arcs cost at least ¢, then the
“effective depth” is roughly C*/&

= Takes time O(b“ ™) (exponential in effective depth)

C*/e “tiers” <

= How much space does the frontier take?
= Has roughly the last tier, so O(b¢ ™)

M)
O/

= |s it complete?

= Assuming C*is finite and £ > 0, yes!

= |s it optimal?
= Yes! (Proof next lecture via A*)



Video of Demo Empty UCS




Video of Demo Maze with Deep/Shallow Water --- BFS or UCS? (part 1)




Video of Demo Maze with Deep/Shallow Water --- BFS or UCS? (part 2)




