Agents and environments

a .
/Agent Environment
Sensors -«

Percepts
?

Actuators >
& ~ Actions & /

= An agent perceives its environment through sensors and acts upon
it through actuators (or effectors, depending on whom you ask)

A human agent in Pacman

—— A T4 C5188 Pacman
@‘_,/ d
Organize v

%) Berkeley Towel Fold

% NOVA Excerpt --

v pacman.bat

pacman.bat Date modified: 8/23/2012 2:04 AM “Date created: 8/23/2012 9:42 AM

re: 91 bytes

2 Jlcmm W8S) 0o -reave

The task environment - PEAS

= Performance measure

= -] per step; + 10 food; +500 win; -500 die;
+200 hit scared ghost

= Environment

= Pacman dynamics (incl ghost behavior)
= Actuators

= | eft Right Up Down or NSEW

= Sensors
= Entire state is visible (except power pellet duration)

SCORE: 18

PEAS: Automated taxi

= Performance measure

= Income, happy customer, vehicle costs,
fines, insurance premiums

= Environment

= US streets, other drivers, customers,
weather, police...

= Actuators
= Steering, brake, gas, display/speaker

= Sensors

= Camera, radar, accelerometer, engine

. | :
sensors, microphone, GPS nest

http://nypost.com/2014/06/21/how-google-might-

PEAS: Medical diagnosis system

* Performance measure
= Patient health, cost, reputation

= Environment
= Patients, medical staff, insurers, courts

= Actuators

= Screen display, email

= Sensors
= Keyboard/mouse

3

=

!

0
Dot By

)s -

: _

n s
o \
:v

n.;.
iz
.z\ |

2 1 |
‘ 1l
. \ | -

A R .
ik

Environment types

Fully or partially observable
Single-agent or multiagent
Deterministic or stochastic
Static or dynamic

Discrete or continuous
Known physics?

Known perf. measure?

Agent design

= The environment type largely determines the agent design
= Partially observable => agent requires memory (internal state)
» Stochastic => agent may have to prepare for contingencies
» Multi-agent => agent may need to behave randomly
» Static => agent has time to compute a rational decision
» Continuous time => continuously operating controller
» Unknown physics => need for exploration
» Unknown perf. measure => observe/interact with human principal

Simple reflex agents

2 S £

Agent SENsors e

'

What the world
1s like now

JUSUIUOIIAUS]

QCondition-action rules)—» ;ﬁggfdagg%%{,\;

Actuators

Pacman agent in Python

class GoWestAgent(Agent):

def getAction(self, percept):
if Directions.WEST in percept.getLegalPacmanActions():
return Directions.WEST
else:
return Directions.STOP

Eat adjacent dot, if any

Eat adjacent dot, if any

Pacman agent contd.

= Can we (in principle) extend this reflex agent to behave well in all
standard Pacman environments?
= No — Pacman is not quite fully observable (power pellet duration)
= Otherwise, yes — we can (in principle) make a lookup table.....

= How large would it be?

Reflex agents with state

Y el \
/ / "s\\ f \

y ~ SENsors s
XN
-

@ow the world evolves)—p Wil;ai[ii[(léenv(\)?; Id
[T
=
(What my actions do é
Q
=
O
y =

(Condition-action rules)—» S\}Eﬁﬁla;g%g\lv

Agent Actuators -
o P

Goal-based agents

-

’——_“‘.

’, .N"\ Sensors
-
s
> *
What the world
< How the world evolves < Tike iow
(What my actions do W}il?tl lég\ggﬁ‘tz)enlllfe
What action I

Coms ——

Agent
\ g

should do now

4

Actuators

JUSUWIUOIIAUH

Spectrum of representations

wIIQQQQ
OIICCCQ

(a) Atomic (b) Factored (¢) Structured

LOGIC
/ nets

Outline of the course

unknown

RL

known deterministic StOChaSti_>C
atomic
/ SEARCH MDPs

factored Bayes

Summary

= An agent interacts with an environment through sensors and
actuators

= The agent function, implemented by an agent program running on a
machine, describes what the agent does in all circumstances

= Rational agents choose actions that maximize their expected utility

= PEAS descriptions define task environments; precise PEAS
specifications are essential and strongly influence agent designs

= More difficult environments require more complex agent designs and
more sophisticated representations

CS 188: Artificial Intelligence

Search

Instructors: Stuart Russell and Dawn Song

University of California, Berkeley

[slides adapted from Dan Klein, Pieter Abbeel]

Today

= Agents that Plan Ahead

= Search Problems

» Uninformed Search Methods
= Depth-First Search
= Breadth-First Search

» Uniform-Cost Search

Planning Agents

Planning agents decide based on evaluating
future action sequences

Must have a model of how the world
evolves in response to actions

Usually have a definite goal
Optimal: Achieve goal at least cost

Move to nearest dot and eat it

Bydey - [ipse — — . - ——"-SE

SCORE: 0

Precompute optimal plan, execute it

fe o e |

T ™ Pydey |- Team

U he Sear™ L ~ l ~ -

SCORE:

Search Problems

Search Problems

= A search problem consists of:

e [T-T]' T

An initial state s

Actions A(s) in each state u

Transition model Result(s,a) K

A goal test G(s) E - !
= S has no dots left

Action cost c¢(s,a,s’)
= +1 per step; -10 food; -500 win; +500 die; -200 eat ghost

= A solution is an action sequence that reaches a goal state
= An optimal solution has least cost among all solutions

Search Problems Are Models

Example: Traveling in Romania

But then...

Bucharest to London
@ Lufthansa « Tue, Jan 26

7:10am - 4:45pm
11h 35m (1 stop)
7h 15m in Frankfurt (FRA)

Show details

Example: Traveling in Romania

99 Fagaras

Oradea
71
75 151
Arad
Sibiu
118
80
Timisoara
1l Lugoj
70
Mehadia
75
Drobeta 120

Rimnicu Vilcea

Pitesti

Craiova

Neamt
87
Tasi
92
Vaslui
211 142
98 .
5 +— . Hirsova
Urziceni
86
Bucharest
90
Giurgiu Eforie

= State space:

= Cities
Initial state:
= Arad

Actions:
= Go to adjacent city

Transition model:

= Reach adjacent city
Goal test:

= s =Bucharest?
Action cost:

» Road distance from sto s’

Solution?

Models are almost always wrong

Models are almost always wrong

5|z o -
T 2% b . MapPoint
> Brier Ave e\ & ez '
23 ni< = ICELAND
>3 & 3 e :
s) B % s i ;
RIJS m
| o = g” 3 - ATLANTIC i S
‘ f o QCEAN
% q § - “" Helsin .Tver
3 [HelsingT IS
=
= 4

Vi nlus If: s

LN
Blal?'stoké' BELARUS, %)

POLAND /= Kiev: &

A .4 Wroolaww
S HE : ww ® UKRAIHE

% ,_\;,B&elﬁrzﬁzfmmf S 'cmgme

N--.”/’ X @*‘ uﬁGARv w
g st e -'ROMAI'IIA

- ~»~Buéha;est»

z

2 Zoom on map cli

Start: Haugesund, Rogaland, Norway

End: Trondheim, Ser-Trendelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

nrk.no/alltidmoro

What’s in a State Space?

The world state includes every last detail of the environment

SCORE:

A search state keeps only the details needed for planning (abstraction)

= Problem: Pathing
= States: (x,y) location
= Actions: NSEW
= Transition: update x,y value
= Goal test: is (x,y)=destination

= Problem: Eat-All-Dots

States: {(x,y), dot Booleans}
Actions: NSEW

Transition: update x,y and
possibly a dot Boolean

Goal test: dots all false

State Space Sizes

= World state:
= Agent positions: 120
= Food count: 30

= Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(23%)x(12%)x4
= States for pathing?
120
= States for eat-all-dots?
120x(239)

State Space Graphs and Search Trees

State Space Graphs

= State space graph: A mathematical
representation of a search problem
= Nodes are (abstracted) world configurations
= Arcs represent transitions (labeled with actions)
= The goal test is a set of goal nodes (maybe only one)

= |n a state space graph, each state occurs only
once!

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

State Space Graphs

= State space graph: A mathematical
representation of a search problem e
= Nodes are (abstracted) world configurations @ e

= Arcs represent successors (action results)

= The goal test is a set of goal nodes (maybe only one) \Qj% a
= |n a state space graph, each state occurs only @ 6 a
once!

Tiny state space graph for a tiny

= We can rarely build this full graph in memory search problem

(it’s too big), but it’s a useful idea

State Space Graphs vs. Search Trees

/State Space Graph\

ChAC
ST

Each NODE in in
the search tree is
an entire PATH in
the state space
graph.

We construct the
tree on demand —
and we construct as
little as possible.

-

Search Tree

S
—<<
e
T — —
b e h r
I — N I
a r p q f
P | ' S
p f q c G
' —_~ .
g ¢ G a

a

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

X0

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?
/N
a b
o ORNANWA
b G a G
AN N\
a/ G Ié G

/N /N

Important: Those who don’t know history are doomed to repeat it!

Quiz: State Space Graphs vs. Search Trees

Consider a rectangular grid: How many states within d steps of start?

How many states in search tree of depth d?

Tree Search

Search Example: Romania

Oradea
71
Neamt
87
75 151
Tasi
Arad
. 92
Sibiu 99 Fagaras
. | Vaslui
80
Timisoara Rimnicu Vilcea
142
. . 211
111 Lugoj Pitesti
70 98
. 5 Hirsuva
Mehadia 101 “ Urziceni
86
73 Bucharest
Drobeta 120
90

Craiova Giursiu Eforie

Creating the search tree

- - -

4 Jiblu R " Timisoara)

- - -

-y T -y -
- A Y

——l-—- - - - - -

_w ‘. Olaclea R nlcuVllCra YR Alad _'fj.'J .. Lugoj

.-.—....-.—.—. - _-— - - -

t. Zernd .

I

)

.....-.—,-——.

-l -

Creating the search tree

Tirms oara

- ‘- - - - -

- | -, - - - | -

“"Fagaras) ¢ Oradea) ¢ P1 o V| lkea;fj.‘) A:acl 2 4 Lugg

-—‘—r\.'_

'-.—h_'-_ _'—_"T'_' ! -—HT'_— '-.._: o1 -

.'\

'--__‘W.-_—'

- -

Or adPa

'_'H.-r"'_'

Creating the search tree

C_Shiu_2 Timisoara
o l'. -"\
s hY
s \

——————————

ST Amd LugDJ

—————

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

= Main variations:
= Which leaf node to expand next
= Whether to check for repeated states
= Data structures for frontier, expanded nodes

Systematic search

frontier

reached =
unexplored ded expanded U frontier
expande

1. Frontier separates expanded from unexplored region of state-space graph
2. Expanding a frontier node:

a. Moves a node from frontier into expanded

b. Adds nodes from unexplored into frontier, maintaining property 1

Depth-First Search

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?

: 4
Space complexity? 1 node
b nodes
2
Cartoon of search tree: b® nodes
» b is the branching factor m tiers <
= mis the maximum depth
= solutions at various depths
b™ nodes

Number of nodes in entire tree?
= 1+b+b*+....6M=0(b™)

Depth-First Search (DFS) Properties

= What nodes does DFS expand?

= Some left prefix of the tree down to depth m. 1 node
= Could process the whole tree! b nodes
= If mis finite, takes time O(b") b2 nodes
: m tiers
= How much space does the frontier take? <
= Only has siblings on path to root, so O(bm)
= |s it complete? b™ nodes

= m could be infinite
= preventing cycles may help (more later)

= |s it optimal?
= No, it finds the “leftmost” solution, regardless
of depth or cost

Breadth-First Search

Strategy: expand a
shallowest node first

Implementation:
Frontier is a FIFO queue

Breadth-First Search

Search

Tiers

Breadth-First Search (BFS) Properties

= What nodes does BFS expand? .

= Processes all nodes above shallowest solution b 7 node

= Let depth of shallowest solution be s _ b nodes

= Search takes time O(b°) stiers < / b2 nodes
= How much space does the frontier take? N / ~\ b® nodes

= Has roughly the last tier, so O(b°) -

@,
b™ nodes

= |s it complete?
M)
»= s must be finite if a solution exists, so yes! ~

» |s it optimal?
= |f costs are equal (e.g., 1)

Quiz: DFS vs BFS

Quiz: DFS vs BFS

= When will BFS outperform DFS?

= When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]

Example: Maze Water DFS/BFS (part 1)

Example: Maze Water DFS/BFS (part 2)

Iterative Deepening

= |dea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages
= Run a DFS with depth limit 1. If no solution...
= Run a DFS with depth limit 2. If no solution...
= Run a DFS with depth limit 3.

= |sn’t that wastefully redundant? /

= Generally most work happens in the lowest
level searched, so not so bad!

Uniform Cost Search

g(n) = cost from root to n

Strategy: expand lowest g(n)

Uniform Cost Search

2
O O
s g K

Frontier is a priority queue @ 8 1
sorted by g(n) 1 @ @ ﬁ
15
0
- ®
@ 3 © 9 ® 1
@4 @11 @ (17 @11 @ 16
Cost @6 a W1IB3@7 p q f
contours -

Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?

= Processes all nodes with cost less than cheapest solution!

= |f that solution costs C* and arcs cost at least ¢, then the
“effective depth” is roughly C*/&

= Takes time O(b“ ™) (exponential in effective depth)

C*/e “tiers” <

= How much space does the frontier take?
= Has roughly the last tier, so O(b¢ ™)

M)
O/

= |s it complete?

= Assuming C*is finite and £ > 0, yes!

= |s it optimal?
= Yes! (Proof next lecture via A*)

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water --- BFS or UCS? (part 1)

Video of Demo Maze with Deep/Shallow Water --- BFS or UCS? (part 2)

