
CS 188
Spring 2020

Introduction to
Artificial Intelligence Final

• You have approximately 170 minutes.

• The exam is closed book, closed calculator, and closed notes except your two-page crib sheet.

• Mark your answers on gradescope, and click "submit".

• For multiple choice questions,

– □ means mark all options that apply
– # means mark a single choice

First name

Last name

SID

Your Discussion TA(s) (fill all that apply):

□ Ajan □ Albert □ Amitav □ Angela □ Anusha □ Arin
□ Benson □ Carl □ Cathy □ Charles □ Harry (Huazhe) □ Jade
□ Jasmine □ Jeffrey □ Jierui □ Lindsay □ Mesut □ Pravin
□ Rachel □ Ryan □ Saagar □ Yanlai

For staff use only:
Q1. Potpourri /17
Q2. Learn From Old Data /6
Q3. Value of Perfect Information /11
Q4. Languages /20
Q5. Pacman Loses Control /13
Q6. A Nonconvolutional Nontrivial Network /9
Q7. Searching for a Bayes Network /13
Q8. Particle Madness /11

Total /100

1

THIS PAGE IS INTENTIONALLY LEFT BLANK

2

SID:

Q1. [17 pts] Potpourri
(a) Recall that in search algorithms, that nodes are expanded and each node corresponds to a state s and a path from the start

state to s. Recall further that in graph search one can only expand a node corresponding to a state once. Also, below we
will denote a heuristic for A∗ by ℎ(⋅). Assume all state transitions have a positive cost.
(i) [1 pt] Which search algorithm would typically have a bigger fringe in graph search for large search problems?
 BFS # DFS
BFS scales exponentially with the size of the path while DFS scales linearly.

(ii) [1 pt] Which search algorithms are complete for tree search?
■ BFS □ DFS ■ A∗ with any heuristic ■ A∗ with a consistent heuristic. ■ Uniform
Cost Search
BFS,A*, and UCS are all complete because they explore nodes in the order of increasing distance away from start
node, preventing the from getting stuck in cycles. Note, even with a really bad (or even negative heuristic) the
positive backwards cost for nodes in A* will eventually accumulate and it will eventually be forced to explore a path
to the goal node if it exists.
Special Note, this question was intended for finite state spaces, but with infinite graphs we can get different results.
In the example below, your fringe will always prefer to go upwards since the backwards cost for all of those nodes
is less than 2. Thus the goal will never be explored and UCS is not complete. UCS is equivalent to A* with the
trivial (h = 0) heuristic which is also admissible and consistent. Thus A* with any heuristic and A* with consistent
heuristic are also not complete, only BFS is. So if one marked BFS only they were also given full credit.

(iii) [1 pt] Which search algorithms are optimal for graph search?
□ BFS □ DFS □ A* with any heuristic ■ A* with a consistent heuristic. ■ Uniform
Cost Search
Only UCS and A* even take into account edge weight distance and A* requires a heuristic to at least be admissible
to guarantee optimality.

(iv) [1 pt]
If for a constant c and all states s, ℎ(s) = c, A∗ is equivalent to UCS (uniform cost search).
 True # False]
If every node has the same constant added to its backwards cost, when comparing nodes in the fringe node state will
look relatively the same as if the constant wasn’t added (which is UCS since A* is just UCS with no heuristic).

(v) [1 pt]
If for any pair of states, s and s′, ℎ(s) − ℎ(s′) ≤ c(s, s′) where c(s, s′) is the minimum cost path from s to s′, then
A∗ will expand a node at most once in a tree search.
 True # False
This is the definition of consistency which guarantees that a node will only be explored in A* if it is by the optimal
path to that node.

(vi) [1 pt]
In A∗ tree search with any heuristic, one may not get the optimal path.
 True # False
The heuristic needs to be admissible to ensure optimality.

3

(vii) [1 pt] In a minimax tree of depth 2 (one max layer, one min layer, and a leaf layer) with a branching factor of 3, what
is the maximum number of nodes that can be pruned by alpha-beta pruning?
0 # 2 # 3 4 # 6 # 9 # None of the above

This is an example of such a tree.
(viii) [1 pt]

In full depth minimax search, with � − � pruning, the minimum number of leaves that can be explored is that one
can do in a depth-D tree (the depth is the total depth considering both players) with branching factor B (both players
have B options) is
(B∕2)D # DB∕2 # BD # DB BD∕2

Normally there are BD leaf nodes. In Alpha beta pruning we have to look at all the first player’s moves but we only
have to look at one of the second players moves. Thus we "skip" every other levels and only have to look at BD∕2.

(ix) [1 pt]
In expectimax search with two players, one max and the other chance, one can use pruning to reduce the search cost.
True False
Pruning is about exploiting your knowledge of how both players will choose actions to look at less nodes. Since in
expectimax one player will be picking randomly we have to look at every one of their actions, which will affect the
expected value and the value of the node above it.

(b) Suppose we are solving a CSP that has 20 variables (Xi for i = 1, 2, ..., 20) and all constraints are binary. X1 is involved
in binary constraints with 6 other variables. X2 is involved in binary constraints with 9 other variables.
While running the arc consistency algorithm, we reach a point when all variables have 4 values left in their domains, and
we have one last arc in the queue: X1 ⟶ X2. (Recall a value x for a variable X is consistent with an arc X ⟶ Y if
there is still a value y for variable Y where (x, y) is valid for the binary constraint on X and Y .)
(i) [1 pt] Now, we are processing the arc X1 ⟶ X2. We are able to remove a value from the domain of a variable

because it was inconsistent, and add the necessary arcs into the queue.
How many arcs are in the queue now?
3 # 4 # 5 6 # 9 # 18
None of these # We cannot determine the exact number of arcs
We remove values of the variable on the tail, soX1 loses a value. This means we have to add every possible arc that
points into X1. There are 6 of those, one for each constraint that involves X1.

(ii) [1 pt] Following the previous part, we processed any arcs that may have been added to the queue. No more values
were removed from any variable. As a result, we plan to assign a value to one of the variables to continue with
backtracking search. Pick the statement below that is most valid.
We should assign a value to X1 because it has the Least Constraining Value
 We should assign a value to X1 because it has the Minimum Remaining Values
We should assign a value to X2 because it has the Least Constraining Value
We should assign a value to X2 because it has the Minimum Remaining Values
We should assign a value to some Xi (i ≥ 3) that has the Least Constraining Value
We should assign a value to some Xi (i ≥ 3) that has the Minimum Remaining Values
We choose variables based on MRV not LCV. X1 has the fewest number of values remaining as it lost a value in
part (i) and no other variable lost a value.

(c) We are given the traditional game of Pacman with food and 2 ghosts on an M by N grid. Pacman can move up, left, right,
or down each turn and he wins by eating all the food. Whenever Pacman moves, the ghosts will move in the opposite
direction.
(i) [1 pt] State representation 1 is to keep track of Pacman’s location, the location of both ghosts, and which food was

eaten. Please select all of the terms below that should be multiplied together as one product to correctly quantify the

4

SID:

number of states in this representation.
□ 3MN ■ MN ■ 2MN ■ (MN)2
There areMN possible locations for pacman, (MN)2 possible location combos for both ghosts, and 2MN possible
values of theMN booleans we need to keep track of whether each food was eaten.

(ii) [1 pt] State representation 2 is to keep track of whether each food was eaten, and what is in each location (whether
it contains Pacman, a Ghost, or nothing). Please select all of the terms below that should be multiplied together as
one product to correctly quantify the number of states in this representation.
■ 3MN □ MN ■ 2MN □ (MN)2
There are still 2MN possible food configurations and there are 3MN possible configurations to keep track of what
is in each location(there are 3 options for each ofMN locations).

(iii) [1 pt] Which state representation would have a higher branching factor?
State representation 1 will have a higher branching factor # State representation 2 will have a higher
branching factor They will have the same branching factor
Pacman has 4 actions available regardless of the state representation so they will have the same branching factor.

(iv) [1 pt] If we were to run DFS on a particular starting game using both state representations which representation will
expand more states?
State representation 1 will expand more states # State representation 2 will expand more states
 They will expand the same amount of states
Since the starting location are the same and the actions available are the same, the successors for each representation
will be the same. Thus at each step in DFS we would be presented with the same options, so DFS will run identically
on both representations. Note, State representation 2 has waymore possible states but most of them are unreachable
by the games rule so they will not affect DFS.

(d) [1 pt] Which of the following are true statements about perceptrons?
□ A larger magnitude of activation corresponds to higher certainty.
□ The main purpose of the bias term is to restrict the activation values to fall in our desired range.
■ We can use a black-box binary perceptron to build a multi-class perceptron.
None of the above
A) Perceptrons are only trained to label samples not give confidence bounds. B) The bias term is used to shift the boundary
so that it’s not restricted to stay at the origin. C) A binary perceptron can be used for each class to build a multiclass
perceptron. To classify a new training sample, we will select one of the classes that the binary perceptrons classifies it as
since we don’t know the exact activation.

(e) [1 pt] You are training a logistic regression model and you find that your training loss is near 0 but test loss is very high.
Which of the following is expected to help to reduce test loss? Select all that apply.
■ (A) Increase the training data size.
□ (B) Decrease the training data size.
□ (C) Increase model complexity.
■ (D) Decrease model complexity.
■ (E) Train on a combination of your training data and your test data but you test only on your test data
□ (F) Conclude that Machine Learning does not work
Since we are facing overfitting we can increase the training data size or decrease the model complexity to combat this.
Also, if we train on our test data our test loss will definitely improve dramatically (although you should NEVER do this
in practice because it defeats the purpose of testing)

5

Q2. [6 pts] Learn From Old Data
You encounter a generic MDP and decide to play the game, performing random actions at every timestep. You record all of
your transitions in the form (s, a, s′, r), where s is the orginal state, a is the action taken, s′ is the state you reached, and r is the
reward you earned from that transition. After collecting a large amount of these data points you decide reinforcement learning
some things about this MDP.

(a) [1 pt] You want to estimate a function Q(s, a) which returns the total rewards you will earn in expectation if you start
in state s, take action a, and act optimally from then on. You will do this by initializing Q(s, a) to 0 for every state and
action pair. Then you will examine your data points one at a time, updating your approximation after every data point.
Assign each of the following terms into an entry of the equation below, which indicates how to use a collected data point
(s, a, s′, r) to update your Q(s, a) function. Fill in the blanks with an integer from 1 to 5 corresponding to the correct
expression. Note, � is the learning rate.

1. r
2. �
3. Qcurr(s′, a′)
4. 1 − �
5. max

a′

Qupdated(s, a) ←←←
A= 4

Qcurr(s, a)+
B= 2 [

C= 1
+

D= 5 E= 3
]

Recall the formula for Q-learning:

Qupdated(s, a) ← (1 − �)Qcurr(s, a) + � ⋅ sample
← (1 − �)Qcurr(s, a) + � ⋅ [r + max

a′
Qcurr(s′, a′)]

(b) After you finish examining your data in the order you collected it and updating theQ(s, a) function accordingly you realize
you have converged to the true optimal and accurate Q(s, a) function. However, you have an accident and lose all of your
memory about that Q(s, a) function. Even worse, you also randomly shuffled the order of your data points and have no
way of knowing what the original order was.
(i) [1 pt] Can you use your procedure from part (a) on the shuffled data to recreate the optimal Q(s, a) given that you

only examine each data point once?
Yes No
We are not guaranteed in Q-learning to converge to the optimal Q function after only making a single pass on our
data (s, a, s′, r) because of the fact way we use a max over the current approximation of Q(s, a) so the order we do
the updates in matters.

(ii) [1 pt] Can you use your procedure from part (a) on the shuffled data to recreate the optimal Q(s, a) given that you
are allowed to run the procedure as much as you want (You are allowed to examine the same data points multiple
times)?
 Yes # No
Q learning convergence requires us to look at all the (s, a, s′, r) and iterate infinitely many times over that data with
sufficient exploration before we converge to the optimal Q-learning function. Since there was sufficient exploration
in the old ordering there will be sufficient exploration in the data overall.

(c) Later on, you decide to try to approximate a different function, V ∗(s) which returns the total rewards you will earn in
expectation if you start in state s and act optimally from then on. You want to do this by initializing V ∗(S) to 0 for every
state. Then you will examine your data points one at a time, updating your approximation after every data point.
(i) [1 pt] Assign each of the following terms into an entry of the equation below, which indicates how to use a collected

data point (s, a, s′, r) to update your V ∗(s) function. Note, � is the learning rate.

1. r

6

SID:

2. �
3. Vcurr(s′)
4. 1 − �

Vupdated ←←←
A= 4

Vcurr(s)+
B= 2 [

C= 1
+

D= 3
]

We can use TD-learning.

Vupdated(s) ← (1 − �)Vcurr(s) + �(sample)
← (1 − �)Vcurr(s) + �[r + Vcurr(s′)]

(ii) [2 pts] Can you use your data points to train the true optimal and accurate V ∗(s) function?
Yes, because the r and s′ in the definition is the result of taking action a from state s. This is true for r and s′
from any data point (s, a, s′, r) collected under any policy (i.e., even an old one)
Yes, because the source of the data doesn’t matter in RL
No, because the old data is useless without the policy
No, because the max cannot be calculated after-the-fact
 No, because the r and s′ in the definition is the result of taking the optimal action from s. This is only true for r
and s′ from a data point (s, a, s′, r) collected under the most recent/optimal policy
By definition, TD learning only converges to the optimal V ∗ if we are exploring on the optimal policy �∗. Since we
are not guaranteed to receive (s, a, s′, r) on the optimal �∗, we cannot necessarily converge to V ∗.

7

Q3. [11 pts] Value of Perfect Information
Consider the setup shown in the figure below, involving a robotic plant-watering system with some mysterious random forces
involved. Here, there are 4 main items at play.
(1) The robot (R) can choose to move either left (l) or right (r). Its chosen action pushes a water pellet into the corresponding
opening.
(2) The random switch (S) is arbitrarily in one of two possible positions {s0, s1}. When in position (s0), it accepts a water pellet
only from the (l) tube. When in position (s1), it accepts a water pellet only from the (r) tube.
(3) A controllable three-way switch (T) can be chosen to be placed in one of three possible positions {t0, t1, t2}.
(4) A plant (P) is arbitrarily located in one of three possible locations {p0, p1, p2}. When in position pi, it can only be suc-
cessfully watered if the corresponding tube ti has been selected and if the water pellet was sent in a direction that was indeed
accepted by the first switch (S).

Finally, in this problem, utility (U) is 1 when the plant successfully receives the water pellet, and 0 otherwise.

(a) Let’s first set this problem up as a decision network.
(i) [1 pt] Which of the following decision networks correctly describe the problem described above? Select all that

apply. Recall the conventions from the lecture notes:

action nodes as rectangles , chance nodes as ovals , and utility nodes as diamonds .

■ (A) P

S

T

R

U

□ (B)

P

S

T

R

U

8

SID:

□ (C) P

S

T

R

U

□ (D)

P

S

T

R

U

R andT are

actions you can choose so they should be rectangles, S and P are random outcomes so they should be ovals. All the
variables are involved in the calculation of U but they do not influence each other directly, so A has to be the answer.

9

(ii) [1 pt] Fill in the following probability tables, given that there is an equal chance of being at each of their possible
locations.

S P (S)
s0

1
2

s1
1
2

P P (P)
p0

1
3

p1
1
3

p2
1
3

(iii) [1 pt] Consider the table below.

6
rows would have U = 1, and

30
rows would have U = 0.

1∕6 of the combinations will successfully water the plant and there are 36 total combinations. So there are 6 with

U = 1 and 30 (the rest) with U = 0. R S T P U
⋮ ⋮ ⋮ ⋮ ⋮

(b) Before selecting your actions, suppose that someone could tell you the value of either S or P . Follow the steps below
to calculate the maximum expected utility (MEU) when knowing S, or when knowing P . Then, decide which one you
would prefer to be told.
(i) [1 pt] What isMEU (S)?
0 # 1

9 # 1
6 # 1

4 1
3 # 1

2
2

3 # 3
4 # 5

6 # 1 # None of the above
Note: can definitely answer this with intuition (and no math).
= 1

2MEU (S = s0) +
1
2MEU (S = s1)

= 1
2 (maxt(EU (S = s0, T = t0), EU (S = s0, T = t1), EU (S = s0, T = t2)))

+ 1
2 (maxt(EU (S = s1, T = t0), EU (S = s1, T = t1), EU (S = s1, T = t2)))

= 1
2 (max(1∕3, 1∕3, 1∕3)) +

1
2 (max(1∕3, 1∕3, 1∕3))

= 1
3

(ii) [1 pt] What isMEU (P)?
0 # 1

9 # 1
6 # 1

4 # 1
3 1

2
2

3 # 3
4 # 5

6 # 1 # None of the above
Note: can definitely answer this with intuition (and no math).
= 1

3MEU (P = p0) +
1
3MEU (P = p1) +

1
3MEU (P = p2)

= 1
3 (maxR(EU (P = p0, R = l), EU (P = p0, R = r))) +

1
3 (maxR(EU (P = p1, R = l), EU (P = p1, R = r))) +
1
3 (maxR(EU (P = p2, R = l), EU (P = p2, R = r)))
= 1

3 (max(1∕2, 1∕2)) +
1
3 (max(1∕2, 1∕2)) +
1
3 (max(1∕2, 1∕2))
= 1

2

(iii) [1 pt] Would you prefer to be told S or P ? # S P
P since it has a higher MEU (and therefore a higher VPI).

(c) (i) [1 pt] What isMEU (S, P)?
0 # 1

9 # 1
6 # 1

4 # 1
3 # 1

2
2

3 # 3
4 # 5

6 1 # None of the above
1, because you have enough information to definitely get the water pellet to the plant.

(ii) [1 pt] In this problem, does V PI(S, P) = V PI(S) + V PI(P)? # Yes No
V PI(S, P) =MEU (S, P) −MEU (none)
V PI(S) =MEU (S) −MEU (none)

10

SID:

V PI(P) =MEU (P) −MEU (none)
Answer is NO, becauseMEU (S, P) = 1,MEU (S) = 1

3 , andMEU (P) = 1
2 .

(iii) [1 pt] In general, does V PI(a, b) = V PI(a) + V PI(b)? Select all of the statements below which are true.
Yes, because of the additive property.
Yes, because the order in which we observe the variables does not matter.
Yes, but the reason is not listed.
 No, because the value of knowing each variable can be dependent on whether or not we know the other one.
No, because the order in which we observe the variables matters.
No, but the reason is not listed.

(d) For each of the following new variables introduced to this problem, what would the corresponding VPI of that variable be?

(i) [1 pt] A new variable X indicates the weather outside, which affects the overall health of the plant.
VPI(X)<0 VPI(X)=0 # VPI(X)>0
The health of the plant does not affect the utility so the VPI is 0.

(ii) [1 pt] A new variable X indicates the weather outside, which affects the metal of switch S such that when it’s hot
outside, the switch is most likely to remain in position s0 with probability 0.9 (and goes to s1 with probability 0.1).
VPI(X)<0 # VPI(X)=0 VPI(X)>0
This will allow us to predict which direction to move the robot with more accuracy so the VPI is greater than 0.

11

Q4. [20 pts] Languages
To discuss a strategy to play against Pacman, the ghosts send each other encrypted messages. Pacman knows that they are using
one of English, Romanian, French, German and Swedish. He intercepted the ghosts’ messages, but only characters "a", "o", "u",
"ä", "ö", "ü" and "â" are decrypted correctly and everything else were lost.
Pacman would like to know which language the ghosts are using. He gathered information about the 5 languages, as below.
Assume that characters that are not checked in the table will never appear in texts in that language.

Characters occurrence table:
a o u ä ö ü â

English ✓ ✓ ✓

Romanian ✓ ✓ ✓ ✓

French ✓ ✓ ✓ ✓ ✓

German ✓ ✓ ✓ ✓ ✓ ✓

Swedish ✓ ✓ ✓ ✓ ✓

Frequency table:
a o u

English 0.4 0.4 0.2
Romanian 0.6 0.1 0.25
French 0.4 0.25 0.3
German 0.4 0.2 0.3
Swedish 0.5 0.2 0.1

(a) Probability Warm Up
(i) [1 pt] If Pacman does not see any ü, select the languages that are possible:

■ English ■ Romanian ■ French ■ German ■ Swedish # None of the above
Text from any language has a non-zero probability of not having ü, although for some languages it happens with
probability 1 and for German and French, the probability is smaller.

(ii) [2 pts]
English Romanian French German Swedish
0 % 0 % 0 % 34 % 66 %

Pacman assumes that the ghosts have chosen their language uniformly randomly, and he did research on the character
frequencies and normalized them among the 7 characters in each language, as listed in the frequency table above.
Unfortunately Pacman lost the old decryption data and can only recall from memory that he has seen ä. For lan-
guages that are not possible, please write down 0 in the table above.

The ghosts sent a new message just now, and Pacman has 4 characters successfully decrypted, which are 3 occur-
rences of a and 1 occurrence of o. Assuming the occurrences of characters are mutually independent, what is
Pacman’s best estimation of the probabilities of each language, in percentages? Write down the nearest integers
in the table above.
The two language that have ä are German and Swedish.
P (Swedish) = 0.530.21

0.530.21+0.430.21 = 0.66, and P (German) = 0.430.21
0.530.21+0.430.21 = 0.34. They sum to 1.

Note that we can omit the
(3+1

1

)

since it’s a common factor.

Pacman thinks it’s a good idea to train neural networks to classify the text based on the decrypted characters.

(b) (i) [1 pt] Given an arbitrary function from x to y, with enough training time and appropriate hyper-parameters, a neural
net with 2 hidden layers that have sufficient number of parameters can gain a training accuracy arbitrarily close to
100% for an arbitrarily large training set. True # False
Universal function approximation theorem.

(ii) [1 pt] Given any dataset and enough training time, with appropriate hyper-parameters, a sufficiently large neural net
can gain a training accuracy arbitrarily close to 100%. # True False
It’s possible to have exactly the same features but different labels, and the training accuracy would never reach 100%
in this case. In general, we just don’t get 100% training accuracy even heavily overfitted.

(iii) [1 pt] Given any dataset and enough training time, with appropriate hyper-parameters, a sufficiently large neural net
can gain a test accuracy arbitrarily close to 100%. # True False
We cannot guarantee 100% test accuracy.

(c) [7 pts]
Given the following concepts in neural nets, match them to the ...
(a) Back Propagation.
(b) Output layer

12

SID:

(c) Hidden unit
(d) Stochastic Gradient Descent
(e) Batch Gradient Descent
(f) Activation function.
(g) Gradient
Match them to the most related concept or procedure in the list.
(1) tanh can be used as the (f)
(2) weight vectors are used in a (c)
(3) a single data point is used in (d) to compute a(n) (g) using (a)
(4) many data points are used in (e) to compute a(n) (g) using (a)
(5) (b) can compute a probability distribution over classes

But Pacman decided to start simple.

• f1, f2, f3 are the (normalized) frequencies of "a", "o", "u", respectively

• z1i = w1if + b1i, where f = [f1 f2 f3]⊤ and each w1j is a 1 × 3 vector

He built Neural Net A as above.

f1

f2

f3

z11

z12

z13

z14

z15

softmax

(d) [1 pt] Pacman used the set up for Project 5 to implement neural network A. He trained it for 1 epoch and got a training
accuracy of 50%, but he forgot to save the model. The TA suggests that Pacman can train neural network A from the
start again for 1 epoch, passing in the same data in the same order, and Pacman will have the same weights and the 50%
training accuracy.
This is not guaranteed. If you tried and remember, you don’t always get the same thing by rerunning the Project 5 codes.
Basically, there’s randomness in initialization and Stochastic GD (if you are using it).

(e) Pacman trained Neural Net A with some data. He tried to classify some new data with the trained model, but the test
accuracy was low. What can he do to improve the performance?
(i) [1 pt] Pacman can replace the softmax layer with sigmoid
□ if the training accuracy is low □ if the training accuracy is high None of the above
Sigmoid is an activation function.

(ii) [1 pt] Pacman can add more nodes (z16, z17,…) to the layer
□ if the training accuracy is low □ if the training accuracy is high None of the above
There are 5 labels, so we should have 5 nodes in the layer before softmax.

(iii) [1 pt] Pacman can add more training data
□ if the training accuracy is low ■ if the training accuracy is high # None of the above
With this simple architecture, it’s hard to overfit unless we have very few/biased training data. Adding more training
data would hopefully solve the overfitting issue.

Neural Net B:

13

f1

f2

f3

z11

z12

z13

z14

z15

softmax

z21

z22

z23

z24

z25

(f) [1 pt] Pacman would like to try adding a layer on Neural Net A to get Neural Net B. Which of the following would lead
you to expect Neural Net B to have better training accuracy than Neural Net A?
□ z2i = w2i ⋅ z1 + b2i, where z1 = [z11, z12, z13, z14, z15]⊤

□ z2i = w2i ⋅ z1 + b2i, where z1 = [z11, z12, z13, z14, z15]⊤, and change z1i = w1if + b1i to z1i = ReLU
(

w1if
)

+ b1i
■ z2i = w2i ⋅ ReLU

(

z1
)

+ b2i, where z1 = [z11, z12, z13, z14, z15]⊤

None of the above
2 layers of linear combination without non-linearity in between is in no way more powerful than 1 layer of linear combi-
nation. This is learned in lecture and reinforced in WHW 4.
ReLU

(

w1if
)

seems to include non-linearity, but without the bias term included in the parenthesis, it’s really a scaled
feature or a 0, which is nothing more powerful than the original z1 layer.

(g) [2 pts] Suppose the activation function for z1i is g, then we can represent the NN in the graph as
□ softmax

(

g
(

w2(w1f + b1) + b2
))

,
■ softmax

(

w2 ⋅ g
(

w1f + b1
)

+ b2
)

,
both are incorrect
with dimensions: w1: 5 × 3 , b1: 5 × 1 , w2: 5 × 5 , b2: 5 × 1 .

14

SID:

Q5. [13 pts] Pacman Loses Control
Pacman finds himself inside the grid world Markov Decision Process (MDP) depicted below. Each rectangle represents a
possible state. Pacman has two possible actions, left or right. However, these movement actions only work with probability p.
With probability q Pacman moves in the opposite direction. Otherwise Pacman stays in the same state. I.E. T (B, rigℎt, C) = p,
T (B, rigℎt, A) = q and T (B, rigℎt, B) = 1 − q − p. If Pacman physically moves right from state D (with probability p if he
chooses right from D, or with probability q if he chooses left from D) he earns a reward of 3000 and enters the terminal state
where he can no longer perform actions. Similarly if Pacman physically moves left from A he earns a reward of 0 and enters the
terminal state. Note is the discount factor.

A B C D
R = 0 R = 3000

(a) Assume p = .5, q = 0, and = 2
3 for part (a)

(i) [1 pt] What is the value of V ∗(D) (the expected value of total discounted rewards pacman can get from state D)

V ∗(D) = 2250

V ∗(D) = .5 ∗ 3000 + .5 ∗ 2
3 ∗ V ∗(D)

solve for V ∗(D)
.5 chance of moving and getting a reward 3000, .5 chance of staying and getting a reward of V ∗(D) ∗

(ii) [1 pt] What is the value of V ∗(C) (the expected value of total discounted rewards pacman can get from state C)

V ∗(C) = 1125

V ∗(C) = .5 ∗ 2
3 ∗ V ∗(D) + .5 ∗ 2

3 ∗ V ∗(C)
solve for V ∗(C) using V ∗(D) = 2250 part the previous part
.5 chance of moving and getting a reward V ∗(D) ∗ , .5 chance of staying and getting a reward of V ∗(C) ∗

(b) For each subpart in part (b) you will be given two sets of parameters. Select which set of parameters results in a greater
value of V ∗(D) (or whether they are the same).
(i) [1 pt] Set I: {p = .5, q = 0, = .5} Set II: {p = .6, q = 0, = .5}

Set I’s V ∗(D) is greater Set II’s V ∗(D) is greater # They are equal
Since p is higher in Set II it will reach the reward faster and incur less discounting.

(ii) [1 pt] Set I: {p = .5, q = 0, = 1} Set II: {p = .6, q = 0, = 1}

Set I’s V ∗(D) is greater # Set II’s V ∗(D) is greater They are equal
Even though p is higher in Set II so it will reach the reward faster there is no discounting so they will both get the
max reward anyway.

(iii) [1 pt] Set I: {p = .6, q = .1, = .5} Set II: {p = .1, q = .6, = .5}

Set I’s V ∗(D) is greater # Set II’s V ∗(D) is greater They are equal
Since p and q are swapped, for whatever policy is optimal for Set I we can choose the opposite actions and get the
same performance in Set II.

(iv) [1 pt] Set I: {p = .1, q = 0, = 1} Set II: {p = .8, q = .1, = 1}

 Set I’s V ∗(D) is greater # Set II’s V ∗(D) is greater # They are equal
In Set I there is no discounting so you will eventually reach and earn the max reward of 3000. In Set II there is a
nonzero probability of accidentally taking the reward of 0 so we will have an expectation less than 3000.

(v) [1 pt] Set I: {p = .5, q = 0, = .5} Set II: {p = .5, q = .1, = .5}

 Set I’s V ∗(D) is greater # Set II’s V ∗(D) is greater # They are equal

15

In Set II, the positive Q Value causes you to accidentally go in the opposite direction and earn less than 3000 in
expectation.

(c) Assume p = 0, q = .5, and = .5 for part (c). Pacman decides to use policy iteration to figure out the optimal policy for

this MDP. He starts with this policy: �(A) �(B) �(C) �(D)
right left left left

(i) [1 pt] Pacman uses policy evaluation to evaluate his policy and then he uses policy improvement to update his policy.
Select which states (if any) have a different action according to the policy after improvement is over.
■ A □ B □ C □ D # None changed
Since q = .5 and p = 0 it is optimal to choose left at every state and try to accidentally move towards the 3000
reward. Thus the only state whose action needs to change to be optimal is state A.

(ii) [1 pt] After part (i) we run policy evaluation and policy improvement infinitely more times. How many more times
will the policy change (not including a potential change in part (i))?
 0 # 1 # 2 # 3 # 4 # 16 # ∞
Since the policy is optimal after state A changes to left there will be no more changes.

(d) After some practice runs, Pacman realizes what he thought about T (s, a, s′) and R(s, a, s′) might be wrong. A policy �
is strictly greedy with respect to a set of Q-values as long as ∀s ∀a ≠ �(s) Q(s, �(s)) > Q(s, a) I.E. the Q value for
the action chosen by the policy must be strictly greater than the Q value for all other actions. Pacman decides to use
approximate q-learning to come up with a strictly greedy policy.
Pacman has 4 feature functions available.
f1(s, a) =

{

1 if s = C
0 else f2(s, a) =

{

1 if (a = right) ∧ (s = A)
0 else

f3(s, a) =
{

1 if a = left
0 else f4(s, a) =

{

1 if (a = left) ∧ ((s = A) ∨ (s = B))
0 else

He wants to choose weights w1, w2, w3, and w4 that he can use to calculate Q(s, a) by multiplying each weight by
its respective feature and adding the products together. For each policy below select which weights must be non-zero
(weights can be negative or positive) for the calculated Q-values to generate the policy as a strictly greedy policy. If it is
not possible to generate the strictly greedy policy with the given features mark “Not Possible".

(i) [1 pt] �(A) �(B) �(C) �(D)
right right right right □ w1 □ w2 ■ w3 □ w4 # Not Possible

If we choose w3 to be negative Q(s, Left) will be less than Q(s, Rigℎt) for every state.

(ii) [1 pt] �(A) �(B) �(C) �(D)
right left left left □ w1 ■ w2 ■ w3 □ w4 # Not Possible

If we choose w3 to be positive Q(s, Left) will be greater than Q(s, Rigℎt) for every state. If we choose w2 to be
even more positive then Q(A,Rigℎt) will be greater than Q(A,Left).

(iii) [1 pt] �(A) �(B) �(C) �(D)
left right left right □ w1 □ w2 □ w3 □ w4 Not Possible

There is no way to distinguish better actions for C and D since none of the features consider those states and an
action at the same time.

(iv) [1 pt] �(A) �(B) �(C) �(D)
right left right right □ w1 ■ w2 ■ w3 ■ w4 # Not Possible

If we choose w3 to be negative Q(s, Left) will be less than Q(s, Rigℎt) for every state. If we choose w4 to be even
more negative, states A and B will prefer left. If we choose w2 to be even more positive than those, state A will
prefer right

16

SID:

Q6. [9 pts] A Nonconvolutional Nontrivial Network
You have a robotic friend MesutBot who has trouble passing Recaptchas (and Turing tests in general). MesutBot got a 99.99%
on the last midterm because he could not determine which squares in the image contained stop signs. To help him ace the final,
you decide to design a few classifiers using the below features.

• A = 1 if the image contains an octagon, else 0.

• B = 1 if the image contains the word STOP, else 0.

– S = 1 if the image contains the letter S, else 0.
– T = 1 if the image contains the letter T, else 0.
– O = 1 if the image contains the letter O, else 0.
– P = 1 if the image contains the letter P, else 0.

• C = 1 if the image is more than 50% red in color, else 0.

• D = 1 if the image contains a post, else 0.

Y

A B C D

S T O P

(a) First, we use a Naive Bayes-inspired approach to determine which images have stop signs based on the features and Bayes
Net above. We use the following features to predict Y = 1 if the image has a stop sign anywhere, or Y = 0 if it doesn’t.

(i) [1 pt] Using the independence assumptions encoded in the Bayes Net, which of the following are true?
■ If we know whether the picture has the word "STOP" (B), the appearance of the letter "S" is independent from
the appearance of the letter "T" in the image.
□ If we know whether the picture has a STOP sign (Y), the appearance of the letter "S" is independent from the
appearance of the letter "T" in the image.
■ S ⟂⟂ D|Y
□ A ⟂⟂ B|{S, T ,O, P }
□ The 7 features (A, S, T, O, P, C, D) satisfy the Naive Bayes independence assumptions.
None

• S ⟂⟂ T |B due to inactive triple (blocked common cause S-T-B).
• S is not ⟂⟂ T |Y due to active triple (common cause S-T-B).
• S ⟂⟂ D|Y due to inactive triple (blocked common cause B-Y-D).
• A ⟂⟂ B|{S, T ,O, P } is not true due to active triple (common cause A-Y-B).
• This Bayes net doesn’t satisfy the Naive Bayes independence assumptions because the S,T,O,P features are

dependent given Y .

(ii) [1 pt] Which expressions would a Naive Bayes model use to predict the label for B if given the values for features
S = s, T = t, O = o, P = p? Choose all valid expressions.

■ b = argmax
b
P (b)P (s|b)P (t|b)P (o|b)P (p|b)

□ b = argmax
b
P (s|b)P (t|b)P (o|b)P (p|b)

■ b = argmax
b
P (b|s, t, o, p)

■ b = argmax
b
P (b, s, t, o, p)

□ b = argmax
b
P (s, t, o, p|b)

None

Note argmax
b
P (b)P (s|b)P (t|b)P (o|b)P (p|b) = argmax

b
P (b, s, t, o, p), which are both correct. The conditional

probability assumptions from the Bayes Net enable us to write this equality.
Note P (s|b)P (t|b)P (o|b)P (p|b) = P (s, t, o, p|b). This can be read off of the Bayes Net as well, because all the
features are independent given the label B = b.

17

Finally note argmax
b
P (b|s, t, o, p) = argmax

b
P (b,s,t,o,p)
P (s,t,o,p) = argmax

b
P (b, s, t, o, p) because P (s, t, o, p) has all four of

its values already given, and does not depend on our optimization variable b in any way.
(iii) [1 pt] Which expressions would we use to predict the label for Y with our Bayes Net above? Assume we are given

all features except B. So A = a, S = s, T = t, etc. For the below choices, the underscore means we are dropping
the value of that variable. So y, __ = (0, 1) would mean y = 0.

□ y, __ = argmax
y,b

P (y)P (a|y)P (b|y)P (c|y)P (d|y)P (s|b)P (t|b)P (o|b)P (p|b)

□ y, __ = argmax
y,b

P (s)P (t)P (o)P (p)P (a)P (b|s, t, o, p)P (c)P (d)P (y|a, b, c, d)

□ First compute b′ = argmax
b

of the formula chosen in part (ii).
Then compute y = argmax

y
P (y)P (a|y)P (b′|y)P (c|y)P (d|y)

□ First compute b′ = argmax
b

of the formula chosen in part (ii).
Then compute y = argmax

y
P (y|a, b′, c, d)

■ y = argmax
y

∑

b′
P (y)P (a|y)P (b′|y)P (c|y)P (d|y)P (s|b′)P (t|b′)P (o|b′)P (p|b′)

None
Sum out possibilities for b given the features S, T ,O, P

(iv) [1 pt] One day MesutBot got allergic from eating too many cashews. The incident broke his letter S detector, so that
he no longer gets reliable S features. Now what expressions would we use to predict the label for Y ? Assume all
features except B,S are given. So A = a, T = t, O = o, etc.

□ y = argmax
y
P (y)P (a|y)P (c|y)P (d|y)

□ y, __, __ = argmax
y,b,s

P (y)P (a|y)P (b|y)P (c|y)P (d|y)P (s|b)P (t|b)P (o|b)P (p|b)

□ y, __ = argmax
y,s

P (y)P (a|y)P (b|y)P (c|y)P (d|y)P (s|b)P (t|b)P (o|b)P (p|b)

□ y, __ = argmax
y,b

P (y)P (a|y)P (b|y)P (c|y)P (d|y)P (t|b)P (o|b)P (p|b)

□ y, __ = argmax
y,b

P (y)P (a|y)P (b|y)P (c|y)P (d|y)P (s|b)P (t|b)P (o|b)P (p|b)

□ y, __ = argmax
y,b

P (y|a, b, c, d)

■ y = argmax
y
P (y)P (a|y)P (c|y)P (d|y)

∑

b′,s′
P (b′|y)P (s′|b′)P (t|b′)P (o|b′)P (p|b′)

None
Use variable elimination on s and b (because b cannot be accurately calculated without s).

(b) [1 pt] You decide to try to output a probability P (Y |features) of a stop sign being in the picture instead of a discrete
±1 prediction. We denote this probability as P (Y |f⃗ (x)). Which of the following functions return a valid probability
distribution for P (Y = y|f⃗ (x))? Recall that y ∈ {−1, 1}.
■ ey⋅w⃗T f⃗ (x)

e−y⋅w⃗T f⃗ (x)+ey⋅w⃗T f⃗ (x)

■ 1
2

□ 0.5
1+e−w⃗T f⃗ (x)

□ −1
1+ew⃗T f⃗ (x)

+ 1
None
Valid probability distribution means that the probabilities over all possible values of y must sum to 1.

P (Y = y|f⃗ (x)) = ey⋅w⃗T f⃗ (x)

e−y⋅w⃗T f⃗ (x)+ey⋅w⃗T f⃗ (x)
works because P (Y = 1|f⃗ (x)) + P (Y = −1|f⃗ (x)) = 1 (it is the softmax function).

1
2 works because we just need P (Y = 1|f⃗ (x)) + P (Y = −1|f⃗ (x)) = 1

2 +
1
2 = 1, so it is valid.

0.5
1+e−w⃗T f⃗ (x)

and −1
1+ew⃗T f⃗ (x)

+ 1 don’t depend on y so we can’t guarantee the sum of the two probabilities adds to 1, and thus
cannot guarantee that those two expressions are a valid probability distribution.

18

SID:

Unimpressed by the perceptron, you note that features are inputs into a neural network and the output is a label, so you modify
the Bayes Net from above into a Neural Network computation graph. Recall the logistic function s(x) = 1

1+e−x has derivative
)s(x)
)x = s(x)[1 − s(x)]

S

T

O

P

wS

wT

wO

wP

×

×

×

×

b1

+ E

A

ReLU

C

D

wA

B

wB

wC

wD

×

×

×

×

b2

+ X s(⋅)

y∗

Loss

(c) For this part, ignore the dashed edge when calculating the below.
(i) [1 pt] What is)Loss

)wA
?

)Loss
)s(X) ⋅ [s(X) ⋅ (1 − s(X))] ⋅ A

2(s(X) − y∗) ⋅ [s(X) ⋅ (1 − s(X))] ⋅ A
)Loss

)s(X) ⋅ [s(X) ⋅ (1 − s(X))] ⋅ 2A + 1

)Loss
)s(X) ⋅ [s(X) ⋅ (1 − s(X))] ⋅ 2A

2(s(X) − y∗) ⋅ [s(X) ⋅ (1 − s(X))] ⋅ A + 1
)Loss

)s(X) ⋅ [s(X) ⋅ (1 − s(X))] ⋅ A + 1
None

)Loss
)wA

=)Loss
)s(X)

⋅
)s(X)
)X

⋅
)X
)AwA

⋅
)AwA
)wA

=)Loss
)s(X)

⋅ [s(X) ⋅ (1 − s(X))] ⋅ 1 ⋅ A

19

(ii) [1 pt] What is)Loss
)wS

? Keep in mind we are still ignoring the dotted edge in this subpart.

)Loss
)s(X) ⋅ [s(X) ⋅ (1 − s(X))] ⋅wB ⋅

({

1 E ≥ 0
0 E < 0

)

⋅ S

2(s(X) − y∗) ⋅ [s(X) ⋅ (1 − s(X))] ⋅wB ⋅

({

1 E ≥ 0
0 E < 0

)

⋅ S

)Loss
)s(X) ⋅ [s(X) ⋅ (1 − s(X))] ⋅wB ⋅

({

1 E ≥ 0
0 E < 0

)

⋅ 2S + S

)Loss
)s(X) ⋅ [s(X) ⋅ (1 − s(X))] ⋅wB ⋅

({

1 E ≥ 0
0 E < 0

)

⋅ 2S

2(s(X) − y∗) ⋅ [s(X) ⋅ (1 − s(X))] ⋅wB ⋅

({

1 E ≥ 0
0 E < 0

)

⋅ S + S

)Loss
)s(X) ⋅ [s(X) ⋅ (1 − s(X))] ⋅wB ⋅

({

1 E ≥ 0
0 E < 0

)

⋅ S + S

None

)Loss
)wS

=)Loss
)s(X)

⋅
)s(X)
)X

⋅
)X
)BwB

⋅
)BwB

)ReLU (E)
⋅
)ReLU (E)

)E
⋅
)E
)SwS

⋅
)SwS
)wS

=)Loss
)s(X)

⋅ [s(X) ⋅ (1 − s(X))] ⋅ 1 ⋅wB ⋅

({

1 E ≥ 0
0 E < 0

)

⋅ 1 ⋅ S

(d) MesutBot is having trouble paying attention to the S feature because sometimes it gets zeroed out by the ReLU, so we
connect it directly to the input of s(⋅) via the dotted edge. For the below, treat the dotted edge as a regular edge in the
neural net.
(i) [1 pt] Which of the following is equivalent to)Loss

)wA
?

)Loss
)s(X) ⋅ [s(X) ⋅ (1 − s(X))] ⋅ A

2(s(X) − y∗) ⋅ [s(X) ⋅ (1 − s(X))] ⋅ A
)Loss

)s(X) ⋅ [s(X) ⋅ (1 − s(X))] ⋅ 2A + A

)Loss
)s(X) ⋅ [s(X) ⋅ (1 − s(X))] ⋅ 2A

2(s(X) − y∗) ⋅ [s(X) ⋅ (1 − s(X))] ⋅ A + A
)Loss

)s(X) ⋅ [s(X) ⋅ (1 − s(X))] ⋅ A + A
None
This doesn’t change because the added edge is further upstream fromwA and doesn’t affect gradient flows between
wA and Loss. From above, we copy:

)Loss
)wA

=)Loss
)s(X)

⋅
)s(X)
)X

⋅
)X
)AwA

⋅
)AwA
)A

=)Loss
)s(X)

⋅ [s(X) ⋅ (1 − s(X))] ⋅ 1 ⋅wA

(ii) [1 pt] Which of the following is equivalent to)Loss
)wS

? Keep in mind we are still treating the dotted edge as a regular
edge.

20

SID:

)Loss
)s(X) ⋅ [s(X) ⋅ (1 − s(X))] ⋅wB ⋅

({

1 E ≥ 0
0 E < 0

)

⋅ S

2(s(X) − y∗) ⋅ [s(X) ⋅ (1 − s(X))] ⋅wB ⋅

({

1 E ≥ 0
0 E < 0

)

⋅ S

)Loss
)s(X) ⋅ [s(X) ⋅ (1 − s(X))] ⋅wB ⋅

({

1 E ≥ 0
0 E < 0

)

⋅ 2S + S

)Loss
)s(X) ⋅ [s(X) ⋅ (1 − s(X))] ⋅wB ⋅

({

1 E ≥ 0
0 E < 0

)

⋅ 2S

2(s(X) − y∗) ⋅ [s(X) ⋅ (1 − s(X))] ⋅wB ⋅

({

1 E ≥ 0
0 E < 0

)

⋅ S + S

)Loss
)s(X) ⋅ [s(X) ⋅ (1 − s(X))] ⋅wB ⋅

({

1 E ≥ 0
0 E < 0

)

⋅ S + S

 None

Due to the new dotted edge, there are now two paths along the neural network that lead from output to wS .

)Loss
)wS

=)Loss
)s(X)

⋅
)s(X)
)X

⋅
(

)X
)BwB

⋅
)BwB

)ReLU (E)
⋅
)ReLU (E)

)E
⋅
)E
)SwS

+)X
)SwS

)

⋅
)SwS
)wS

=)Loss
)s(X)

⋅ [s(X) ⋅ (1 − s(X))] ⋅

(

1 ⋅wB ⋅

({

1 E ≥ 0
0 E < 0

)

⋅ 1 + 1

)

⋅ S

=)Loss
)s(X)

⋅ [s(X) ⋅ (1 − s(X))] ⋅

({

wB + 1 E ≥ 0
1 E < 0

)

⋅ S

21

Q7. [13 pts] Searching for a Bayes Network
Your friend gives you a joint distribution P (X1, X2, ..., Xn) and wants you to find the structure of a Bayes Network that best
represents this data. This can be formulated as a search problem.

Initial state:

X1 X2 ... Xn

Legal actions: Add an edge between any pair of nodesXi → Xj so long as it does not violate the structure of a Bayes Network
(remember, no cycles!).

Goal state: We don’t know this but our friend does and can tell us if a given state is the goal state or not.

Answer the following questions regarding the search tree for this problem setup.

(a) [1 pt] Considering the set of legal actions, what is the branching factor of the search tree at depth 1? That is, the branching
factor of the node representing the initial state. Write your answer in terms of the number of nodes,N .

N × (N − 1)

We are allowed to add an edge betweenXi → Xj so long as it doesn’t violate the structure of a Bayes Net. When choosing
where to draw our edge, there areN possible ways to select theXi node and (N − 1) possible ways to select the Xj node
(can’t draw an edge from a node to itself!)

(b) [1 pt] Will any states be repeated in our search tree? Yes # No

(c) Assume infinite computational resources, and that the goal state exists somewhere in the search tree.
(i) [1 pt] DFS is guaranteed to return the solution

■ ifN = 10000 □ ifN = 10000 and deleting edges are also legal actions # None of the above
Note that in the original search setup, we cannot form cycles in the search tree, so we will eventually reach the
solution. However, if deleting edges are also legal actions, then we can form cycles. DFS is not complete and
therefore is not guaranteed to find a solution if it exists.

(ii) [1 pt] BFS is guaranteed to return the solution

■ ifN = 10000 ■ ifN = 10000 and deleting edges are also legal actions # None of the above
BFS is complete so if a solution exists, BFS will find it given infinite computational resources.

Now your friend gives you the joint distribution P (X1, X2, X3, X4) and wants you to run A* search to find the right structure.
Recall that A* search expands states with the lowest estimated total cost, where total cost is equal to the sum of backward cost
(sum of edge weights in the path to the state) and estimated forward cost (heuristic value).

(d) For the following heuristics, select the state (or multiple states, if there are ties) that would be expanded by A* search if
the backward cost for all of the states are the same. Assume that X1, X2, X3 and X4 are binary variables.

(A)

X1 X2

X3 X4
(B)

X1 X2

X3 X4
(C)

X1 X2

X3 X4
(D)

X1 X2

X3 X4

(i) [1 pt] Number of nodes with no ancestors.

■ A □ B ■ C □ D
(ii) [1 pt] Number of parameters in Bayes Net representation.

■ A □ B ■ C □ D

22

SID:

To solve this we need to count the number of parameters in each individual CPT and add them together. We are told
that the variables are binary.
(A) Node X1 has 2 parameters and nodes X2, X3 and X4 have 22 parameters each so there are a total of 2 + 22 +
22 + 22 = 14 parameters.
(B) NodeX1 has 24 parameters and nodesX2, X3 andX4 have 2 parameters each so there are a total of 24+2+2+2 =
22 parameters.
(C) Node X1 has 2 parameters and nodes X2, X3 and X4 have 22 parameters each so there are a total of 2 + 22 +
22 + 22 = 14 parameters.
(D) Nodes X1 and X2 have 2 parameters each, node X3 has 23 parameters and node X4 has 22 parameters so there
are a total of 2 + 2 + 23 + 22 = 16 parameters.

(iii) [1 pt] Number of pairs of nodes that are not independent. Note that in each pair, the 2 nodes are unordered, i.e., the
set of all pairs of nodes = {X1X2, X1X3, X1X4, X2X3, X2X4, X3X4}).

□ A ■ B □ C □ D
To solve this we should count the number of pairs of nodes that are not guaranteed to be independent, running d-
separation where needed.
(A) 6 pairs. X1X2, X1X3, and X1X4 are not guaranteed to be independent because they share an edge. Pair X2X3
is not guaranteed to be independent because the only path between them is an active triple X3 ← A → X2. X2X4
is not guaranteed to be independent because the only path between them is an active triple X4 ← A → X2. X3X4
is not guaranteed to be independent because the only path between them is an active triple X3 ← A → X4.
(B) 3 pairs. X1X2, X1X3, and X1X4 are not guaranteed to be independent because they share an edge. Pair X2X3
is guaranteed to be independent because the only path between them is an inactive triple X3 → A ← X2. X2X4 is
guaranteed to be independent because the only path between them is an inactive triple X4 → A ← X2. X3X4 is
guaranteed to be independent because the only path between them is an inactive triple X3 → A ← X4.
(C) 6 pairs. X1X2, X2X3, and X2X4 are not guaranteed to be independent because they share an edge. Pair X1X3
is not guaranteed to be independent because the only path between them is an active triple X1 → B → X3. X1X4
is not guaranteed to be independent because the only path between them is an active triple X1 → B → X4. X3X4
is not guaranteed to be independent because the only path between them is an active triple X3 ← B → X4.
(D) 5 pairs. X1X3, X2X3, and X3X4 are not guaranteed to be independent because they share an edge. Pair X1X2
is guaranteed to be independent because the only path between them is an inactive triple X1 → C ← X2. X1X4 is
not guaranteed to be independent because the only path between them is an active triple X1 → C → X4. X2X4 is
not guaranteed to be independent because the only path between them is an active triple X2 → C → X4.

23

You found a Bayes Net that represents a joint distribution P (A,B, C,D,E, F), as below.

A

B

C

D

E

F

A P(A)
a1 0.2
a2 0.3
a3 0.5

B A P(B|A)
b1 a1 0
b2 a1 1
b1 a2 0.4
b2 a2 0.6
b1 a3 0.9
b2 a3 0.1

C A P(C|A)
c1 a1 0.2
c2 a1 0.8
c1 a2 0.4
c2 a2 0.6
c1 a3 0.5
c2 a3 0.5

D A C P(D|A, C)
d1 a1 c1 0.7
d2 a1 c1 0.3
d1 a2 c1 0.4
d2 a2 c1 0.6
d1 a3 c1 0.8
d2 a3 c1 0.2
d1 a1 c2 0.6
d2 a1 c2 0.4
d1 a2 c2 0.5
d2 a2 c2 0.5
d1 a3 c2 0.9
d2 a3 c2 0.1

E B C P(E|B, C)
e1 b1 c1 0.3
e2 b1 c1 0.4
e3 b1 c1 0.3
e1 b2 c1 0.1
e2 b2 c1 0.8
e3 b2 c1 0.1
e1 b1 c2 0.6
e2 b1 c2 0.3
e3 b1 c2 0.1
e1 b2 c2 0.5
e2 b2 c2 0.2
e3 b2 c2 0.3

F D E P(F|D, E)
f1 d1 e1 0.5
f2 d1 e1 0.5
f1 d2 e1 0.8
f2 d2 e1 0.2
f1 d1 e2 0.6
f2 d1 e2 0.4
f1 d2 e2 0.4
f2 d2 e2 0.6
f1 d1 e3 0.1
f2 d1 e3 0.9
f1 d2 e3 0.3
f2 d2 e3 0.7

(e) [1 pt] Starting with the original 6 CPTs, you eliminated D and got a factor. What is the size of the factor?

36

We haveP (A), P (B|A), P (C|A), P (D|A,C), P (E|B,C), P (F |D,E). To eliminatingD,we look at P(D|A,C) and P(F|D,E),
and get a factor f (F |A,C,E). The domain sizes of A, C , E, F are 3, 2, 3, 2, respectively. So the size of the factor is 36.

(f) You would like to find P (c1|e1, f1). For each ordering i of variable elimination, we denote S(i) to be the size of the largest
factor that gets generated during the variable elimination process following the ordering i.
(i) [1 pt] Among the 4 orderings below, select the ordering(s) i with the largest S(i).
■ A,B,D ■ A,D,B □ B,A,D □ B,D,A

(ii) [1 pt] Among the 4 orderings below, select the ordering(s) i with the smallest S(i).
□ A,B,D □ A,D,B ■ B,A,D ■ B,D,A

The original 6 CPTs: P (A), P (B|A), P (C|A), P (D|A,C), P (E|B,C), P (F |D,E). Domain sizes: A: 3, B: 2, C: 2, D: 2,
E: 3, F: 2.
Domain sizes: A: 3, B: 2, C: 2, D: 2, e1: 1, f1: 1.
A,B,D: 8
Eliminate A: f (B,C,D), P (e1|B,C), P (f1|D, e1). Factor size is 8.
Eliminate B: f (C,D, e1), P (f1|D, e1). Factor size is 4.
Then eliminate D and get f (C, e1, f1). Factor size is 2.
A,D,B: 8
Eliminate A: f (B,C,D), P (e1|B,C), P (f1|D, e1). Factor size is 8.
Eliminate D: f (B,C, f1|e1), P (e1|B,C). Factor size is 4.
Then eliminate B and get f (C, e1, f1). Factor size is 2.
B,A,D: 6
Eliminate B: f (e1|A,C), P (A), P (C|A), P (D|A,C), P (f1|D, e1). Factor size is 6.
Eliminate A: f (C,D, e1), P (f1|D, e1). Factor size is 4.
Then eliminate D and get f (C, e1, f1). Factor size is 2.
B,D,A: 6
Eliminate B: f (e1|A,C), P (A), P (C|A), P (D|A,C), P (f1|D, e1). Factor size is 6.
Eliminate D: f (e1|A,C), P (A), P (C|A), f (f1|A,C, e1). Factor size is 6.
Then eliminate A and get f (C, e1, f1). Factor size is 2.

24

SID:

(g) You’d like to try out sampling to find P (c1|e1, f1). For each question below, select the sampling method(s) that may
generate the specified data point.
(i) [1 pt] a2, b1, c1, d2, e1, f1
■ prior sampling ■ rejection sampling ■ likelihood sampling ■ gibbs sampling # None
The evidences match, and the joint distribution of this observation would be non-zero. All sampling methods can
have this sample.

(ii) [1 pt] a1, b2, c2, d2, e3, f1
■ prior sampling □ rejection sampling □ likelihood sampling □ gibbs sampling # None
Not all the evidences match, so it can only be generated in prior sampling.

(iii) [1 pt] a1, b1, c2, d2, e1, f1
□ prior sampling □ rejection sampling □ likelihood sampling ■ gibbs sampling # None
The evidences match, but the joint distribution of this observation is 0. Only Gibbs Sampling can have this sample
since variables that are not the evidence are randomly assigned at first.

25

Q8. [11 pts] Particle Madness
Humans are finicky and have beliefs, and robots often get annoyed at dealing with us. Ideally, the human will have fully rational
conscious beliefs that drive their actions.

(a) C represents the human’s conscious beliefs, A represents human actions, and R represents reward distribution. Let’s
consider this model that makes the robots happy, in which actions and rewards directly influence conscious beliefs, and
conscious beliefs influence actions.

. . . Ct−1 Ct Ct+1

At−1 At At+1

Rt−1 Rt Rt+1

. . .

(i) [1 pt] Select all variables that exhibit the Markov (memoryless) property in this model
■ C □ A □ R # None
A and R are not independent of the past, given the present. For example, using d-separation, there is an active path
from At−1 to At+1

All variables are binary and have their probabilities specified in the table below. Note the first table doesn’t contain all
the rows.
Ct+1 At Rt Ct P (Ct+1|Ct, At, Rt)
+c +a +r +c .25
-c +a +r +c .75
+c +a +r -c .2
-c +a +r -c .8
+c +a -r +c .4
+c -a -r -c .9

At Ct P (At|Ct)
+a +c .8
-a +c .2
+a -c .3
-a -c .7

Rt At P (Rt|At)
+r +a .5
-r +a .5
+r -a .4
-r -a .6

We are trying to run the forward algorithm to obtain a belief distribution at time i, B(Ci) = P (Ci|a1, .., ai, r1,, ri). We
have B(Ci−1 = +c) = .4 and B(Ci−1 = −c) = .6 and we know that Ai = +a and Ri = +r.

(ii) [1 pt]
If possible, calculateB′(Ci = +c)whereB′(Ci) = P (Ci|a1, .., ai−1, r1,, ri−1), the belief distribution after the time
elapse update but before including the new evidence.

B′(Ci = +c) =
 Not Possible with the given information

In the time elapse update you sum over the old belief state multiplied by corresponding entries in P (Ct+1|Ct, At, Rt).
Since we didn’t give you Ai−1 and Ri−1 you do not have enough information to do this.

(iii) [1 pt] Now it is time to calculate B(Ci = +c) by performing the observation update. If possible, fill in the blank
with a number that will be multiplied by B′(Ci = +c) to create an expression that is equal to B(Ci = +c) after
normalization.

B(Ci = +c) = B′(Ci=+c)∗
.8

B(Ci=+c)+B(Ci=+c) # Not Possible with the given information
In the observation update you weight based on probability of the evidence given the state and then normalize. So

26

SID:

the weight is P (+a| + r) = .8. Note we do not consider R because R is independent of C given A so A has all the
weighting information we need.

(iv) [1 pt] Your friend claims that using particle filtering with 100 particles to estimate the belief distribution for this
model will result in more accurate results than using the forward algorithm. Is your friend correct?
Yes No
Particle filtering essentially is trying to approximate the belief distribution, so by definition it can’t be more accurate
than computing the actual belief distribution itself

(v) [1 pt] Your friend also claims that using particle filtering with 100 particles to estimate the belief distribution for
this model will require less computation and time than using the forward algorithm. Is your friend correct?
Yes No
For the forward algorithm on 100 particles, it requires processing/computing 100 different numbers whereas for the
forward algorithm, we only need to keep track of 2 numbersB(+c) andB(−c). In general you should not use particle
filtering unless you have an extremely large amount of states.

You decide to listen to your friend and run particle filtering. At time i you have a particle that is in state +c. You also
know that Ai = +a, Ri = −r, Ai+1 = −a, and Ri+1 = −r.
(vi) [1 pt] If possible, what is the probability that that particle is sampled into state −c after the time elapse update?

.6
Not possible with the given information

In the time update you sample from P (Ct+1|Ct, At, Rt) so you are looking for P (−c|+ c,+a,−r). However we only
gave you P (+c|+c,+a,−r) = .4, but since there are only 2 values of C, P (−c|+c,+a,−r) = 1−P (+c|+c,+a,−r) =
.6

(vii) [1 pt] If possible, assume that particle did get sampled into state −c. What is its weight during the observation
update?

.7
Not possible with the given information

In particle filtering you weight by the probability of evidence given the actual states. Thus the weight of this particle
is just P (−a| − c) = 0.7. Note we ignore R again because R is independent of C given A.

(b) Humans have unconscious preferences that can influence their beliefs. We incorporate another hidden Markov layer,
whereHt represents unconscious preferences that influence Ct. Our revised model is shown below.

Ht−1 Ht Ht+1

Ct−1 Ct Ct+1

At−1 At At+1

Rt−1 Rt Rt+1

(i) [1 pt] From the model above, indicate which independence relations hold true.

■ Rt ⟂⟂ Ct|At
■ Ct+1 ⟂⟂ Ct−1|Ct,Ht

27

□ Ct+1 ⟂⟂ Ct−1|Ct
■ Ct+1 ⟂⟂ Ct−1|Ct,Ht,Ht+1
■ Ct+1 ⟂⟂ Ct−1|Ct,Ht, At
■ Ct+1 ⟂⟂ Ct−1|Ct,Ht, At, Rt

All of the answers above except Ct+1 ⟂⟂ Ct−1|Ct have no active paths between the selected nodes, and are thus
independent.
Rt ⟂⟂ Ct|At: Independent, because the path from Ct → At → Rt is blocked since we are given At, and the path
Ct → Ht+1 ← Rt is blocked as a common effect triple.

Ct+1 ⟂⟂ Ct−1|Ct,Ht: Having Ct andHt given blocks the causal chains from Ct−1 to Ct+1.

Ct+1 ⟂⟂ Ct−1|Ct: The causal chain throughHt is active, since its no longer given.

Ct+1 ⟂⟂ Ct−1|Ct,Ht,Ht+1: From the second choice, since knowing Ct and Ht is sufficient for independence be-
tween the two nodes, adding additional variables will still mean that they are independent.

Ct+1 ⟂⟂ Ct−1|Ct,Ht, At: Same as the previous one.

Ct+1 ⟂⟂ Ct−1|Ct,Ht, At, Rt: Same as the previous one.
The computation is difficult, so we use particle filtering with n particles. Particles can be defined in a few different ways.
For the next three subparts, indicate whether the proposed particle definition is valid, which means it could be used to
simulate a true distribution of the hidden variables while also incorporating observed A and R values.
(ii) [1 pt] n∕2 of the particles code forH , and n∕2 of the particles code for C .
Yes No
Having half of the particles code for H and half code for C can’t represent the true distribution because they’re
dependent on each other. We need to make sure particles encode the proper dependencies between the random
variables.

(iii) [1 pt] All n particles code for an (H,C) pair.
 Yes # No
Yes, since each particle properly encodes the relationship betweenH and C . It is as if you combinedH and C into
a single joint variable.

(iv) [1 pt] All n particles code forH , and each particle generates an additional particle sampled only fromP (Ct|Ht, Ct−1, At−1, Rt−1)
to represent C only when needed
 Yes # No
Yes, since sampling from P (Ct|Ht, Ct−1, At−1, Rt−1) for each particle coded for H also properly encodes the rela-
tionship betweenH and C .

28

