
CS 188
Spring 2020

Introduction to
Artificial Intelligence Midterm

• You have approximately 110 minutes.

• The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

• Mark your answers ON THE EXAM ITSELF. Provide a brief explanation if applicable.

• For multiple choice questions,
– □ means mark all options that apply
– # means mark a single choice
– When selecting an answer, please fill in the bubble or square completely (and■)

First name

Last name

SID

Student to your right

Student to your left

Your Discussion TA(s) (fill all that apply):

□ Ajan □ Albert □ Amitav □ Angela □ Anusha □ Arin
□ Benson □ Carl □ Cathy □ Charles □ Harry (Huazhe) □ Jade
□ Jasmine □ Jeffrey □ Jierui □ Lindsay □ Mesut □ Pravin
□ Rachel □ Ryan □ Saagar □ Yanlai

For staff use only:
Q1. Are You A Robot? /0
Q2. State Spaces /12
Q3. Sliding Puzzle /10
Q4. MDP /14
Q5. Minesweeper /13
Q6. Pitcher of Milk /16
Q7. Pacman and the Casino /15
Q8. A Convoluted Nontrivial Network /20

Total /100

1

THIS PAGE IS INTENTIONALLY LEFT BLANK

2

SID:

Q1. [0 pts] Are You A Robot?
Welcome to the non-proctored midterm of CS 188 Spring 2020! To ensure that you are a CS 188 student, and you are typing
into the correct answer sheet, we will ask you to perform a quick verification. Failure to complete all parts of this question
can result in voiding the exam score.

(a) Please confirm that the Gradescope Answer Sheet contains the same image as the PDF Exam
 Yes, my Gradescope Answer Sheet contains the same image as the PDF Exam
No, and I have emailed cs188@berkeley.edu about this situation

(b) Which of the squares above contain bicyclists? Select all that apply. You should spend less than 30 seconds on this.
■ A ■ B □ C ■ D ■ E □ F □ G □ H □ I

(c) Please confirm that you are indeed the CS 188 Student whose name will be on this submission, and you will complete
this exam individually, abiding by the Berkeley honor code.
 I am indeed the CS 188 Student whose name will be on the submission of this exam. I will complete this exam
individually, and I will abide by the Berkeley honor code.

3

Q2. [12 pts] State Spaces
Pacman finds himself in an N by M grid again. He starts in the top left corner of the grid and his goal is to reach the bottom
right corner. However there are G ghosts in fixed locations around the grid that Pacman needs to kill before he reaches the goal.
Pacman accomplishes this using his new car the Pacmobile.
Every turn Pacman chooses a radius value, r, which can be any integer from 0 to R inclusive. This shocks and kills all ghosts
within r grids of him (by Manhattan distance). However, the Pacmobile has a limited battery that contains E (a positive integer)
units of charge. Whenever it produces an electric field of radius r, the Pacmobile loses r units of charge. The Pacmobile has 5
moving actions: left, right, up, down, and stop. All of those choices will cost 1 unit of charge as well. If the Pacmobile runs out
of charge Pacman can no longer do anything and the game ends in a loss.

To further clarify, on each turn Pacman chooses a movement action and radius value r. He then shocks all squares in a radius r
around him, performs the movement, and loses r + 1 units of charge. Recall he starts with E units of charge and he has to kill
G ghosts in fixed locations before reaching the bottom right square to win the game.

(a) Mark true or false for the following subparts (Assume at least one solution exists for the search problem)
(i) [1 pt] Running Breadth First Search on this search problem will return the solution that takes the smallest amount

of turns.
 (A) True # (B) False

(ii) [1 pt] Running Breadth First Search on this search problem will return the solution that uses the smallest amount of
charge.
(A) True (B) False

(iii) [1 pt] Running Breadth First Search on this search problem will return the solution where Pacman travels the least
amount of grid distance.
 (A) True # (B) False

(b) Write your answers to the following two subparts in terms of N,M,G,R,E and any scalars you need.
(i) [1 pt] What is the size of the state space, X, using a minimal state representation?

X = N ∗M ∗ E ∗ 2G

(ii) [1 pt] What is the maximum possible branching factor from any state?

5(R + 1)

(c) Now we are going to investigate how the size of the state space changes with certain rule changes. Write your answers to
the following two subparts in terms of X (the size of the original state space) and the terms N,M,G,R,E and any scalars.
Each subpart is independent of the other.
(i) [2 pts] The ghosts are now more resilient so they have H health points. This means each ghost needs to spend H

turns in the electric field before they die. What is the size of the state space with this adjustment?

X× (H+1
2)G

(ii) [2 pts] The Pacmobile can no longer choose any radius value at every turn because it now takes time to increase and
decrease the radius. If pacman is using a radius r on one turn, on the next turn he must choose radius values from
r − 1, r, or r + 1.

X× (R + 1)

(d) Mark whether the following heuristics are admissible or not. Following the original problem description.
(i) [1 pt] ℎ1(n) = The amount of charge remaining.
(A) Admissible (B) Not Admissible

4

SID:

(ii) [1 pt] ℎ2(n) = The number of ghosts still alive.
(A) Admissible (B) Not Admissible

(iii) [1 pt] ℎ3(n) = The Manhattan distance between the Pacmobile and the bottom right corner.
 (A) Admissible # (B) Not Admissible

5

Q3. [10 pts] Sliding Puzzle

Consider the sliding puzzle game as a search problem. The sliding puzzle game consists of a three by three board with eight
numbered tiles and a blank space. At each turn, only a tile adjacent to the blank space (left, right, above, below) can be moved
into the blank space. The objective is to reconfigure any generic starting state to the goal state (displayed on the right).

(a) [2 pts]
(i) [1 pt] What is the size of the state space?
(A) 9 # (B) 9*9 (C) 9!

(ii) [1 pt] Does every board have a unique sequence of moves to reach the goal state?

(A) Yes (B) No

(b) [8 pts] For the following heuristics, mark whether or not they are only admissible (admissible but not consistent), only
consistent (consistent but not admissible), both, or neither.
(i) [1 pt] ℎ1(n) = Total number of misplaced tiles.

(A) Only admissible # (B) Only consistent (C) Both # (D) Neither
(ii) [1 pt]

ℎ2(n) =

{

0 if ℎ1(n) < 3
ℎ1(n) else

 (A) Only admissible # (B) Only consistent # (C) Both # (D) Neither
(iii) [1 pt] ℎ3(n) = Sum of Manhattan distances for each individual tile to their goal location.

(A) Only admissible # (B) Only consistent (C) Both # (D) Neither
(iv) [1 pt] ℎ4(n) = max(ℎ1(n), ℎ3(n)).

(A) Only admissible # (B) Only consistent (C) Both # (D) Neither
(v) [1 pt] ℎ5(n) = min(ℎ1(n), ℎ3(n)).

(A) Only admissible # (B) Only consistent (C) Both # (D) Neither
(vi) [1 pt] ℎ6(n) = ℎ1(n) + ℎ2(n).

(A) Only admissible # (B) Only consistent # (C) Both (D) Neither
(vii) [3 pts] Comparing the heuristics above that you marked as admissible (or both), which one is best (dominates the

others)? If multiple heuristics are tied mark them all.

□ (A) ℎ1 □ (B) ℎ2 ■ (C) ℎ3 ■ (D) ℎ4 □ (E) ℎ5 □ (F) ℎ6

6

SID:

Q4. [14 pts] MDP
Pacman finds himself inside the grid world MDP depicted below. Each rectangle represents a possible state. At each state,
Pacman can take actions up, down, left or right. If an action moves him into a wall, he will stay in the same state. At states
A and B, Pacman can take the exit action to receive the indicated reward and enter the terminal state, E. Note R(s, a, s′) = 0
otherwise. Once in the terminal state the game is over and no actions can be taken. Let the discount factor = 1

2 for this
problem, unless otherwise specified.

S

A

B

E

R = 16

R = 64

(a) (i) [1 pt] What is the optimal action at state S?
 (A) Up # (B) Down

(ii) [1 pt] How many iterations k will it take before Vk(S) = V ∗(S)?

k = 4

(iii) [2 pts] Select all values that Vk(S) will take on during the entire process of value iteration.
■ (A) 0 □ (B) 2 ■ (C) 4 ■ (D) 8

□ (E) 16 □ (F) 32 □ (G) 64 # (H) None of these

(b) Now Ghost wants to mess with Pacman. She wants to change some of the rules of this grid world so that Pacman does
not exit from state A. All subquestions are independent of each other so consider each change on its own.
(i) [1 pt] First, Ghost wants to change the discount factor. Write a bound on the discount factor that guarantees Pacman

exits from B instead of A. Choose an inequality symbol and fill in the box with a number to compare to. Any valid
value of ∈ (0, 1] that satisfies your inequality should cause Pacman to exit from B instead of A.

 # (A) >
 (B) <

1
4

(ii) [2 pts] Next, Ghost thinks she can change the reward function to accomplish this. Write a bound on the reward from
A,R(A, exit, E), that guarantees Pacman exits from B instead of A? Choose an inequality symbol and fill in the box
with a number to compare to. Any value of R(A, exit, E) that satisfies your inequality should cause Pacman to exit
from B instead of A.

R(A, exit, E) # (A) >
 (B) < 32

(iii) [3 pts] Ghost came up with a bunch of reward functions, R′(s, a, s′). Select the new reward functions that cause
Pacman not to exit from state A. Note R(s, a, s′) is the original reward function from the problem description so the
reward from every state is going to be affected.
□ (A) R′(s, a, s′) = 1 +R(s, a, s′)
■ (B) R′(s, a, s′) = 100 + R(s, a, s′)
□ (C) R′(s, a, s′) = −1 + R(s, a, s′)
■ (D) R′(s, a, s′) = −100 +R(s, a, s′)
■ (E) R′(s, a, s′) = −R(s, a, s′)
□ (F) R′(s, a, s′) = 2R(s, a, s′)
(G) None of these

7

S

AC ⋯⋯⋯⋯
x

B

E

R = 16

R = 64

(iv) [2 pts] Ghost realizes she can stop Pacman from exiting from A by adding a certain amount of grids, x, in between
C and A as depicted above. Give a lower bound for x that guarantees Pacman does not exit from A.

x ≥ 2

(c) [2 pts] Another way that Ghost can mess with Pacman is by choosing parameters such that Pacman’s value iteration never
converges. Select which reward function and discount factor pairs cause value iteration to never converge.
□ (A) R′(s, a, s′) = 100 + R(s, a, s′) , = 0.9
□ (B) R′(s, a, s′) = −100 + R(s, a, s′) , = 0.9
□ (C) R′(s, a, s′) = −1 + R(s, a, s′) , = 1.0
■ (D) R′(s, a, s′) = 1 +R(s, a, s′) , = 1.0
(E) None of these

8

SID:

Q5. [13 pts] Minesweeper
In this problem, we will try to solve a classical puzzle game, Minesweeper.
We denote grid squares using (x, y) notation, where x is the row number and y is the column number. (1, 1) would be the
top-left grid square.
We denote grid square (a, b) as adjacent to grid square (x, y) if (a, b) ≠ (x, y), |a − x| ≤ 1, and |b − y| ≤ 1. So (1, 1) has 3
adjacent grid squares, and grid squares that are not on the corners or edges have 8 adjacent grid squares.
You are presented an N byM table where each grid square can be contain a mine or it is empty. The grid squares with a digit
are explored, and other grid squares are unexplored. Explored grid squares cannot be a mine (or you would have exploded), and
the digit shows the total number of mines in its adjacent grid squares.

The player can mark a mine by placing a flag on an unexplored grid square. The final goal is to correctly mark all the mines.
Below is an example game with some mines already marked.

(a) [6 pts] We can formulate the game as a CSP as follows:

• Each unexplored grid square is a variable of domain 2 — either a mine or empty.
• Each digit is a constraint indicating the total number of mines among its adjacent grid squares.

Consider the CSPs corresponding to the following two games, where grid squares without a digit are unexplored. Among
all the constraints (digits), how many are unary, binary and ternary?

(i) [3 pts]
1 2 2
1
1 2 2

Unary: 3

Binary: 4

Ternary: 0
Constraints (1, 1), (2, 1), (3, 1) are unary, and constraints (1, 2), (1, 3), (3, 2), (3, 3) are binary.

(ii) [3 pts]
1 1

1
1 1 1

Unary: 1

Binary: 4

Ternary: 1
Constraint (3, 1) is unary, constraints (1, 3), (2, 1), (3, 2), (3, 3) are binary, and constraint (1, 2) is ternary.

9

(b) We run the following filtering process to eliminate invalid solutions for a game.

1. For each constraint, if there exists a variable that has exactly one value satisfying the constraint, we assign the
variable that value.

2. If any constraint is violated, return "Constraint violated" and terminate.
3. Repeats step 1 and 2 until either all the variables are assigned a value, in which case we have found a solution, or

we can no longer uniquely determine the value of any variable, in which case "Game unsolved" is returned.

Select (A) if the filtering process finds a solution (i.e., assign a value to each variable) , and select (B) otherwise.
To help you understand the process, the answer to game (1) as well as the explanation are given.

1 2 2
1
1 2 2

 (A)
(B)

Explanation: Consider 1 at grid square (2, 1). For variable (2, 2), there is only 1
value ("mine") that satisfies the constraint, so we assign "mine" to variable (2, 2). No
constraints are violated, so we repeat step 1, considering 2 at grid square (1, 2). For
variable (2, 3), there is only 1 value ("mine") that satisfies the constraint, so we assign
"mine" to variable (2, 3). No constraints are violated. We’ve assigned a value to each
variable, hence (A) is selected.

(i) [2 pts]
2 1

1
1 1

(A)
 (B)

(ii) [2 pts]
1 1

1
1 1 1

 (A)
(B)

(iii) [2 pts] Because we cannot always use filtering to find a solution, we must use backtracking search. Below is an
example of a game that cannot be solved by only running filtering.

1 1
1

1 1

We run backtracking search by considering one variable at a time and applying filtering
after each assignment. Suppose we are now considering (1, 1). Note (1,1) is the top left
grid.

1. If we assign value “mine” to grid square (1, 1) and then run filtering, what can we conclude?
(A) We will find a solution (B) Constraint violated # (C) Game unsolved
(1, 1) is now assigned as "mine". Consider 1 at grid square (2, 1). For variable (2, 2), there is only 1 value
("empty") that satisfy the constraint, so we assign "empty" to variable (2, 2). Same for variable (3, 1). No
constraints are violated, so we repeat step 1, considering 1 at grid square (1, 2). For variable (2, 3), there is
only 1 value ("empty") that satisfy the constraint, so we assign "empty" to variable (2, 3). Now 1 at grid square
(3, 2) is violated. Hence (B) is selected.

2. If we assign value “empty” to grid square (1, 1) and then run filtering, what can we conclude?
(A) We will find a solution # (B) Constraint violated (C) Game unsolved
(1, 1) is now assigned as "empty". For each constraint, consider each variable. We cannot assign a value to any
variable. Hence C is selected.

(iv) [1 pt] Is there a unique solution if we run backtracking search on game (4) above? If so, select A and fill in the grid
squares of mines while leaving others empty. Else, select “no solution" or “multiple solutions."

 (A) Unique solution
(B) No solutions
(C) Multiple solutions

D□ 1 1

1 E■ F□
G□ 1 1

10

SID:

Q6. [16 pts] Pitcher of Milk
Consider the task of pushing a cup toward a stationary pitcher of milk (i.e., the pitcher does not move), where both the pitcher
and the milk are sitting on the table. We have a robot with an arm made of 7 joints, where each of those 7 joints can be in one
of 10 possible angles. We can send commands to tell these joints where to go, and our desired goal in this problem is for the
robot to learn how to push the cup toward the pitcher.

(a) [4 pts] Write the problem as an MDP
Let’s first cast this robotic task as an MDP before we figure out how to solve it. Assign each of the following parameters
(1 − 5) to its corresponding MDP component below. If none of these parameters define a particular component, choose
“None of the above."

1. (cx, cy): position of the cup on the table
2. (px, py): position of the pitcher on the table
3. (j1, j2, j3, j4, j5, j6, j7): angle of each joint in the robot’s arm (where each ji takes only one of the 10 possible values)
4. (�1, �2, �3, �4, �5, �6, �7): torques (i.e., commands that tell a joint how to move) for each joint in the robot’s arm
5. (−dx,−dy): negative distance between cup and pitcher

1) Action a:
□ 1 □ 2 □ 3 ■ 4 □ 5 # None of the above

2) State s : (Hint: we want the minimal state representation, so only include elements which are necessary)
■ 1 □ 2 ■ 3 □ 4 □ 5 # None of the above

3) Transition function T (s, a, s′):
□ 1 □ 2 □ 3 □ 4 □ 5 None of the above

4) Reward function R(s, a, s′):
□ 1 □ 2 □ 3 □ 4 ■ 5 # None of the above

(b) [6 pts] Learn Optimal Value Functions
In class, we discussed approaches for using the Bellman equation to solve MDP’s and find out the optimal policy and
optimal values for all states.
Similarly, let’s say we want to now figure out the optimal values V (s) for the states in this problem. Since we don’t know
exactly what will happen as a result of various robot actions until we actually execute them in the real world, we must
observe episodes (as shown below) and use those to learn the optimal values.

E0 = {s(0)0 , a(0)0 , r(0)0 , s(0)1 , a(0)1 , r(0)1 ,… , s(0)T , a
(0)
T , r

(0)
T }

E1 = {s(1)0 , a(1)0 , r(1)0 , s(1)1 , a(1)1 , r(1)1 ,… , s(1)T , a
(1)
T , r

(1)
T }

⋮
EN = {s(N)

0 , a(N)
0 , r(N)

0 , s(N)
1 , a(N)

1 , r(N)
1 ,… , s(N)

T , a(N)
T , r(N)

T }
Using this collected data, direct evaluation and TD learning are two approaches for learning V (s). The 2 main differences
between these approaches are when to perform updates, as well as what the update is.

(i) [1 pt] Which approach requires you to wait until the end of the episode before you can perform any updates to the
value function?
 (A) Direct Evaluation
(B) TD Learning

11

(ii) [2 pts] Select the box that equals the result of direct evaluation.

Here, each state si has been visitedNi times. AndN(si) a set of all places where si is seen: that is,N(si) = {(n, tn)
: state si is seen at time tn in episode n }.

(A) V (si) =
∑

(n,tn)∈N(si)

T
∑

t′=tn
r(n)t′

 (B) V (si) =
1
Ni

∑

(n,tn)∈N(si)

T
∑

t′=tn
r(n)t′

(C) V (si) = max
(n,tn)∈N(si)

T
∑

t′=tn
r(n)t′

(D) V (si) =
1
Ni

max
(n,tn)∈N(si)

T
∑

t′=tn
r(n)t′

(iii) [3 pts] Consider a toy example where a collected episode can be written as follows:
A

r1
←←←←←←←←←→ B

r2
←←←←←←←←←→ C

r3
←←←←←←←←←→ D

Note that none of the states (A,B, C,D) are visited more than once, so we do not need to explicitly maintain counts
in this problem. Fill out the procedures below for what direct evaluation and TD learning would calculate/learn after
each collected time step of data. Assume each ri = 2, the discount rate = 1, and the learning rate � = 1. Make
sure to fill in all the blanks in the answer sheet with what the corresponding capital letter is supposed to be. I.E. for
A you should fill in, VDE(A), (the value of A under Direct Evaluation at t = 1).

Initialize at t = 0

VDE(A) VDE(B) VDE(C) VDE(D)

0 0 0 0

VTD(A) VTD(B) VTD(C) VTD(D)

0 0 0 0

Collect data: A
r1=2
←←←←←←←←←←←←←←←←←←→ B

Update at t = 1
Which values below should be updated?
□ VDE(A) □ VDE(B) □ VDE(C) □ VDE(D)
■ VTD(A) □ VTD(B) □ VTD(C) □ VTD(D)

VDE(A) VDE(B) VDE(C) VDE(D)

A = 0 B = 0 C = 0 D= 0

VTD(A) VTD(B) VTD(C) VTD(D)

E = 2 F= 0 G= 0 H= 0

12

SID:

Collect data: A
r1=2
←←←←←←←←←←←←←←←←←←→ B

r2=2
←←←←←←←←←←←←←←←←←←→ C

Update at t = 2
Which values below should be updated?
□ VDE(A) □ VDE(B) □ VDE(C) □ VDE(D)
□ VTD(A) ■ VTD(B) □ VTD(C) □ VTD(D)

VDE(A) VDE(B) VDE(C) VDE(D)

A2 = 0 B2 = 0 C2 = 0 D2= 0

VTD(A) VTD(B) VTD(C) VTD(D)

E2 = 2 F2 = 2 G2 = 0 H2= 0

Collect data: A
r1=2
←←←←←←←←←←←←←←←←←←→ B

r2=2
←←←←←←←←←←←←←←←←←←→ C

r3=2
←←←←←←←←←←←←←←←←←←→ D

Update at t = 3
Which values below should be updated?
■ VDE(A) ■ VDE(B) ■ VDE(C) □ VDE(D)
□ VTD(A) □ VTD(B) ■ VTD(C) □ VTD(D)

VDE(A) VDE(B) VDE(C) VDE(D)

A3 = 6 B3 = 4 C3 = 2 D3 = 0

VTD(A) VTD(B) VTD(C) VTD(D)

E3 = 2 F3 = 2 G3 = 2 H3= 0

(c) [6 pts] Learn Optimal Policy
After we use the algorithms described above to estimate V (s) for our problem of pushing the mug, we still have the issue
of figuring out the optimal policy �(s) (i.e., what should the robot actually do from the state that it’s in, in order to achieve
high reward and solve the task).

(i) [1 pt] What is a policy in an MDP?
 (A) A mapping, �, of states to actions.
(B) A mapping, �, of states to next states.
(C) A mapping, �, of states to maximum expected value of state.

(ii) [1 pt] Which of the following is performing correct policy extraction, from V (s) to �(s)? Recall that the discount
factor, , is applied to the value of the future state but not to the reward.

(A) �(s) =
∑

a

∑

s′
T (s, a, s′)[R(s, a, s′) + V (s′)]

(B) �(s) = max
a

∑

s′
T (s, a, s′)[R(s, a, s′) + V (s′)]

(C) �(s) = argmaxa
∑

s′
T (s, a, s′)[R(s, a, s′) + V (s′)]

(D) �(s) = max
s′

∑

a
T (s, a, s′)[R(s, a, s′) + V (s′)]

(E) �(s) = argmaxs′
∑

a
T (s, a, s′)[R(s, a, s′) + V (s′)]

13

(F) �(s) =
∑

a

∑

s′
T (s, a, s′)[R(s, a, s′) + V (s′)]

(G) �(s) = max
a

∑

s′
T (s, a, s′)[R(s, a, s′) + V (s′)]

 (H) �(s) = argmaxa
∑

s′
T (s, a, s′)[R(s, a, s′) + V (s′)]

(I) �(s) = max
s′

∑

a
T (s, a, s′)[R(s, a, s′) + V (s′)]

(J) �(s) = argmaxs′
∑

a
T (s, a, s′)[R(s, a, s′) + V (s′)]

(iii) [2 pts] Instead of knowing the optimal value function V (s), what if we instead know the optimal q-value function
Q(s, a)? What is the policy extraction procedure from Q(s, a) to �(s)?
(A) �(s) =

∑

a

∑

s′
T (s, a, s′)Q(s, a)

(B) �(s) = max
a

∑

s′
T (s, a, s′)Q(s, a)

(C) �(s) =
∑

a
Q(s, a)

(D) �(s) = max
a
Q(s, a)

 (E) �(s) = argmaxaQ(s, a)

(F) �(s) = max
s′

∑

a
T (s, a, s′)Q(s, a)

(G) �(s) = argmaxs′
∑

a
T (s, a, s′)Q(s, a)

(iv) [2 pts] Your friend Cora suggests that for your MDP, it would be much easier to learn Q(s, a) and extract a policy
from that, rather than learning V (s) and extracting a policy from that. Do you agree? Why or why not?
(A) Yes, because it’s easier to learn Q values than it is to learn V values
(B) Yes, because calculating argmax is easier than calculating a max
 (C) Yes, because this avoids the need to learn the full T (s, a, s′) for the task
(D) Yes, because this avoids the need for a discount rate
(E) No, because the input space for V (s) is much smaller than Q(s, a)
(F) No, because the use of a discount rate is critical for good learning
(G) No, because calculating 1 sum is better than 2 sums for the policy extraction
(H) No, because they’re both equally good

14

SID:

Q7. [15 pts] Pacman and the Casino
Tired of hiding from ghosts, Pacman traveled to Las Vegas and went to a casino.

(a) Pacman went to play the lotteries. We assume that Pacman is a rational agent, and denote U (x) as Pacman’s utility with
respect to x, the amount of dollars he receives.
(i) [1 pt] Let U (x) = x2. Consider a lottery L that has probability of 0.5 to give $1 and probability 0.5 to give $3.

What is the expected utility of playing the lottery?

5 .

U (L) = 0.5 ⋅ U (1) + 0.5 ⋅ U (3) = 0.5 ⋅ 1 + 0.5 ⋅ 9 = 5.
Note that it is NOT U (0.5 ⋅ 1 + 0.5 ⋅ 3) = 4. That’s the utility of getting a deterministic $2.

(ii) [2 pts] Which of the following are a risk-seeking preference:

□ (A) U (x) = 4x □ (B) U (x) =
√

x ■ (C) U (x) = x
√

x
□ (D) U (x) = −x2 ■ (E) U (x) = − ln x ■ (F) U (x) = −

√

x ln x
(G) None of the above

Functions that are either decreasing slower than linear functions, like −
√

x ln x and − ln x, or increasing faster than
linear, like x

√

x, are risk-seeking.
Note that A is not selected, since linear utility functions with positive coefficients are neither risk-seeking or risk-
preventing regardless of the magnitude of the coefficient.

(iii) [3 pts] Pacman is at a lottery that gives 1, 2, or 3 dollars with some probabilities, and the expected number of dollars
that the lottery gives is m. Suppose the probability that the lottery gives 1 dollar is p. Now, Pacman has two options:
play the lottery, or take m dollars from the casino and leave.

Instructions: You can use p, m, the function U , and scalars to fill in the blanks for this question.

Suppose Pacman will choose to play the lottery if he is indifferent about the choice. Pacman will choose to take m
dollars from the casino and leave if and only if:

U (1) ⋅ (A=p) + U (2) ⋅ (B=3-2p-m) + U (3) ⋅ (C=p+m-2) < D=U(m)

We want the expected utility to be smaller than the utility of gaining m dollars, so the right hand side is U(m).
Pr(1) = p, and solve for the equation system p + Pr(2) + Pr(3) = 1 and 1 ⋅ p + 2 ⋅ Pr(2) + 3 ⋅ Pr(3) = m, we have
Pr(2) = 3 − 2p − m and Pr(3) = p + m − 2.

15

(b) Pacman left the lottery and is sitting in front of a machine to play a game, in which there are two players taking turns.
Upon the absence of the other player, the machine uses an algorithm that chooses actions uniformly at random. Of course,
Pacman is maximizing the score in his moves.
The ghost finds Pacman, and she sneaks into the seat for the other player to play against Pacman, minimizing the score.
However, Pacman does not know that the ghost is there.
The value of each node is the score that Pacman actually receives. You can use expressions using n and scalars in the
blanks, but your answers must simplified to receive credit.

(i) [1 pt] X = 5

(ii) [3 pts] If −∞ < n < A = 7 , W = B = 4 . Else, W = C = 5 .

Let’s represent each node as a tuple (u, v), where u is the score that Pacman think he is getting, and v is the score that he
is actually getting. Then X’s left child would be (7,5), since Pacman think the other player is uniformly random, but it is
actually the ghost being a minimizer. For node X, pacman will now choose the branch. He believes the value of the left
child is 7 > 6, so he will choose the left branch, hence actually getting value 5.
Following the same procedure, Z = (9+n2 ,min(9, n)), and Y’s right child is (8, 4). If 9+n

2 < 8, i.e., n < 7, Pacman will
choose the right branch, and Y = (8, 4). The ghost, having X and Y as her choices, will go for the minimum v value, thus
choosing 4.
If 9+n

2 ≥ 8, i.e., n ≥ 7, Pacman will choose the left branch, and Y = (9+n2 ,min(n, 9)). Note that since n ≥ 7, we have
min(n, 9) ≥ 7, so in node W, the ghost will go for the left branch and choose X, giving value 5.

16

SID:

(c) Pacman looked over the machine and found the ghost. They decided to restart the game, Pacman being the maximizer
and the ghost being the minimizer, taking turns in the game.
The machine now displays the optimal score of internal nodes for each player. So when Pacman is running alpha-beta
pruning, he can check the optimal value of an internal node before looking at its children. However, the machine is not
perfect and has errors when displaying internal values. For each internal node i with optimal value xi, the machine will
display xi + ki. The machine is accurate when displaying the end results.
Each ki is chosen randomly from a set of values. Pacman knows this set, but does not know any of the individual ki values.
For all subquestions below, select the pruned branches if we use alpha-beta pruning and take into account the internal
node information. We prune on equality. If a parent branch is pruned, all its descendant branches must be selected.

(i) [2 pts] Set of values for k: ∀i, ki ∈ {0,±1,±2,±3}

□ A □ B □ C
□ D ■ E ■ F
□ G □ H □ I
□ J ■ K
(L) None should be pruned

Recall that in � − � pruning, child nodes inherent � and � values from their parent, and we propagate values from child
nodes to parent nodes. For simplicity, below we use the labels of the branches for the child nodes.
Below is a detailed running of � − � pruning in this setting, where we have additional information regarding the range.

Root: Range of value: [2, 8]. Set � = 2, � = 8 for Root, A, B, C, D. Explore branch A.
(A, � = 2, � = 8): Range of value: [9, 15]. This is not the branch that the ghost would select. Prune all the children of A,
go back to Root and explore its next branch B.
(B, � = 2, � = 8): Range of value: [2, 8]. Set � = 2, � = 8 for B, G, H, and J. Explore branch G.
(G, � = 2, � = 8): Send v = 1 back to B.
(B, � = 2, � = 8): v = 1 ≥ �? No.
(H, � = 2, � = 8): Send v = 4 back to E.
(B, � = 2, � = 8): v = max(1, 4) = 4 ≥ �? No.
(I, � = 2, � = 8): Send v = 3 back to B.
(B, � = 2, � = 8): Explored all children, so the value for B is max(4, 3) = 4. Send v = 4 back to Root.
(Root, � = 2, � = 8): v = 4 ≤ �? No. Set � = 2, � = min(4, 8) = 4 for Root, C, D. Explore branch C.
(C, � = 2, � = 4): Range of value: [3, 9]. � = 3, � = 4 for C, J and K. and explore branch J.
(J, � = 3, � = 4): Send v = 6 back to B.
(C, � = 3, � = 4): v = 6 ≥ �? Yes! Prune K. Go back to Root and explore its next branch D.
(D, � = 2, � = 4): Send v = 8 back to E.
Root: min(4, 8) = 4. Done!

An observation: with the ranges, we are able to prune more nodes. Actually, if we don’t have the internal values, the
ranges would essentially be (−∞,∞), and we would be able to prune K.
To help you understand, here’s a more intuitive way to explain why F is pruned: The ghost node is looking for something
small, and we know the value is in [2, 8]. When we see 9 in E, we know that A is at least 9, therefore branch A is not
what’s chosen by the ghost node. Then we don’t need to look at A’s children any more.

17

(ii) [3 pts] Set of values for k: ∀i, ki ∈ {0,±1}

□ A □ B □ C
□ D □ E ■ F
□ G □ H ■ I
■ J □ K ■ L
■ M ■ N ■ O
□ P □ Q □ R
■ S ■ T ■ U
(V) None should be pruned

Root: Range of value: [4, 6]. Set � = 4, � = 6 for Root, A and B. Explore branch A.
(A, � = 4, � = 6): Range of value: [5, 7]. Set � = 5, � = 6 for A, G, H, I and J. Explore branch G.
(G, � = 5, � = 6): Send v = 9 back to A.
(A, � = 5, � = 6): v ≤ �? No. Continue exploring.
(H, � = 5, � = 6): Send v = 5 back to A.
(A, � = 5, � = 6): v = min(8, 5) ≤ �? Yes! Prune I and J. Go back to Root, send v = 5.
Root: Set � = max(4, 5) = 5, � = 6 for Root and B. Explore branch B.
(B, � = 5, � = 6): Range of value: [4, 6]. Set � = max(4, 5) = 5, � = 6 for B, C, D, E and F. Explore branch C.
(C, � = 5, � = 6): Range of value: [6, 8]. Set � = max(5, 6) = 6, � = 6 for C, K and L. Explore branch K.
(K, � = 6, � = 6): Send v = 7 back to C.
(C, � = 6, � = 6): v = 7 ≥ �? Yes! Prune L. Go back to B and explore its next branch D.
(D, � = 5, � = 6): Range of value: [9, 11]. This is not the branch that the ghost would select. Prune all the children of D,
go back to B and explore its next branch E.
(E, � = 5, � = 6): Range of value: [4, 6]. Set � = max(4, 5) = 5, � = 6 for E, P, Q and R. Explore branch P.
(P, � = 5, � = 6): Send v = 1 back to E.
(D, � = 5, � = 6): v = 1 ≥ �? No.
(Q, � = 5, � = 6): Send v = 4 back to E.
(D, � = 5, � = 6): v = max(1, 4) = 4 ≥ �? No.
(Q, � = 5, � = 6): Send v = 3 back to E.
(D, � = 5, � = 6): Explored all children, so the value for E is max(4, 3) = 4. Send v = 4 back to B.
(B, � = 5, � = 8): v = 4 ≤ �? Yes! Prune F. Go back to Root and send v = 4.
Root: max(4, 5) = 5. Done!

Another observation: with tighter ranges, we are able to prune even more nodes. The observation of part (i) is a spe-
cial case of this statement, as "having range information" is having tighter ranges than (−∞,∞). The case at the other
end of extreme is to have the tightest (length 0) ranges: the value itself! Then we know the exact value of the root and
just prune everything.

18

SID:

Q8. [20 pts] A Convoluted Nontrivial Network
In lecture and discussion, you have seen how to use Bayes nets to represent conditional independence relationships between
variables. Here we will introduce the concept of a more general graph structure that encodes conditional independence relations:
A Markov Random Field (MRF).

Like a Bayes Net, an MRF has edges that represent correlation. However, in an MRF, edges are undirected and may form
cycles.

An MRF has the following independence assumptions:

• Local Markov Property: A variable is conditionally independent of all non-neighbor variables given all of its neighbors.

• Global Markov Property: If two subsets of variables {X}, {Y } are conditionally independent given a third subset of
variables {Z} that completely separates {X} from {Y }, then Xi ⟂⟂ Yj|{Z},∀i, j .

(a) Indicate if each set of independence relations can be encoded in a Bayes Net, MRF, both, or neither:
(i) [1 pt] The past is independent of the future given the present.
(A) Bayes Net Only # (B) Both # (C) Neither # (D) MRF Only
A causal chain, where the middle is the present, the left is the past, the right is the future. Thus a Bayes net can
represent this. An MRF is the same, but undirected edges.

(ii) [1 pt] Common cause triple independence assumptions.
(A) Bayes Net Only # (B) MRF Only (C) Both # (D) Neither
A common cause is a Bayes Net, so yes, a BN can encode this (conditional) independence relationship. Making
all edges undirected gives you an MRF that can satisfy both the conditional and non-conditional independence
assumptions of the BN.

(iii) [1 pt] Common effect triple independence assumptions.
 (A) Bayes Net Only # (B) MRF Only # (C) Both # (D) Neither
A common effect is a Bayes Net, so yes, a BN can encode this (conditional) independence relationship. Due to the
local markov property, adding given variables always increases the number of independence relations, where as in a
Bayes Net, adding given variables can possibly remove independence relations. Making all edges undirected gives
you an MRF unable to encode the dependence between the two parent nodes when given the child.

(iv) [1 pt] Causal Chain triple independence assumptions.
(A) Bayes Net Only # (B) MRF Only (C) Both # (D) Neither
Same logic as the "past is independent of the future given the present" problem.

(v) [1 pt] There are n ≥ 3 students gossiping, where each student hears exactly one secret and whispers exactly one
secret. Student 1 starts the whispering, and at each timestep i, the i-th student whispers to the i + 1-th student (so
the i + 1-th student listens to the i-th student). At the last timestep n, student 1 listens from student n. There are
n random variables, each of which represents what each student believes was whispered to them by the previous
student.
(A) Bayes Net Only (B) MRF Only # (C) Both # (D) Neither
Note here that the variables are each student’s belief of what was heard. So this forms a cycle, where the 1st student
is influenced by the 0th, the 2nd student is influenced by the 1st, and the 0th student is influenced by the n − 1th.
Bayes Nets can’t represent cycles but MRFs can, as stated in the problem above.
Yes, it is possible to create a circular Bayes net where we form an undirected cycle (one of the arrows points clock-
wise while the others all point counterclockwise, for example). However, in this case, we create a common cause
somewhere, which creates additional conditional independence assumptions. Flip any additional number of arrows
in our circular Bayes Net, and we create more additional unintended independence assumptions.
Note here that the true independence assumptions of our problem need to be, given two student beliefs (X,Y), all
students on one side of X,Y are independent of all students on the other side of X,Y. This is encodeable in an MRF,
where any 2-node cut creates exactly these independence assumptions.
Hence an MRF can represent this cyclic dependency, but not a Bayes Net.

19

(vi) [2 pts] You have four variables and want to encode only the 2 following conditional independence relations (and no
additional independence or conditional independence relations): X1 ⟂⟂ X4 | X2, X3 and X2 ⟂⟂ X3 | X1, X4
(A) Bayes Net Only (B) MRF Only # (C) Both # (D) Neither
Try drawing a Bayes Net with these independence relationships.
A 4 node, 0-2 edge bayes net would satisfy these conditional independence relations but would create extra inde-
pendence relations because at least one variable won’t be connected at all to others.
A 4 node 3 edge bayes net could be a causal chain such asX1 → X2 → X3 → X4, but this would not satisfy the sec-
ond conditional independence relation. Other 3 edge bayes nets similarly do not meet both conditional independence
relations.
A 4 node 4 edge bayes net must connect all edges besides X1, X4 and X2, X3 else it would violate one or both of
the independence relations above. The only 4 edge Bayes Nets satisfying X1 ⟂⟂ X4|X2, X3 are:

X1 X2

X3 X4

and

X1 X2

X3 X4

However, in both of these cases, the 2nd conditional independence relation is not satisfied.
Note that 5 and 6 edge bayes nets cannot satisfy both conditional independence relations because if there are more
than 4 edges for the 4 nodes, at least one of the edges will have to be between X1, X4 and/or X2, X3, making the
conditional independence relations impossible to satisfy.
Since a 4 node Bayes Net cannot have more than 6 edges or else some edges become bidirectional, it cannot satisfy
only these two conditional independence relations.
However, a square MRF with edges (1, 2), (1, 3), (2, 4), and (3, 4) would satisfy exactly the above two conditional
independence assumptions due to the Global Markov Property.

X1 X2

X3 X4

Note that we cannot draw any independence conclusions with no given variables because there exists an unblocked
path between any two variables. Given 1 variable, we still can’t–each pair of variables still has an unblocked path
between them. However, given two variables, they need to form a separating subset between the two variables that
are independent. IfX2, X3 are given, then they separateX1, X4 soX1 ⟂⟂ X4|X2, X3. Same with the case ifX1, X4
are given; they separate X2, X3 so X2 ⟂⟂ X3|X1, X4. Note that no additional conditional independence relations
are created when we have 3-4 given variables.

(b) Consider the following two MRFs.

X Y

Z X

Z

Y

(i) [1 pt] In the left graph, is X ⟂⟂ Y ?
(A) Yes (B) No
Since there exists a path from X to Y that is not blocked by any evidence nodes, they are not independent.

(ii) [1 pt] In the right graph, is X ⟂⟂ Y |Z?
 (A) Yes # (B) No
Since there doesn’t exist a path from X to Y that is not blocked by any evidence nodes, they are independent by the
global markov property (Z is the separating subset between X and Y).

20

SID:

You can think of the above as the active/inactive triples for an MRF and use the Global Markov Property listed above as an
analog for the d-separation algorithm of Bayes Nets. Below, we present a Bayes Net (left) and an MRF (right).

(c) A B

C D E

F G

A B

C D E

F G

(i) [1 pt] Observe the Bayes Net (left). Is C ⟂⟂ E|B,G?
(A) Yes (B) No
Active path: C → A→ (B) ← E

(ii) [1 pt] Observe the Bayes Net (left). What is the least number of nodes that need to be given for C ⟂⟂ D?
 (A) 0 (already independent) # (B) 1 # (C) 2 # (D) 3 # (E) impossible
Both CAD and CFD are inactive common effects. CABD is inactive too because ABD is an inactive common effect.
No nodes need to be given to ensure C ⟂⟂ D.

(iii) [1 pt] Observe the MRF (right). Is C ⟂⟂ E guaranteed?
(A) Yes (B) No
By the global Markov property, since there is no separating subset of given variables between C and E, and there
exists unblocked paths between the two nodes, C is not ⟂⟂ E

(iv) [1 pt] Observe the MRF (right). What is the least number of nodes that need to be given for C ⟂⟂ D?
(A) 0 (already independent) # (B) 1 (C) 2 # (D) 3 # (E) impossible
Both A and F need to be given to form a markov blanket between nodes C and D, ensuring independence via the
Global Markov Property.

(d) [3 pts] Consider the following Bayes Net (left) and analogous MRF (right), where D, E, and F are given.

A B C

D E

F

A B C

D E

F

Which of the dotted line edges do we need to add so that the resultingMRF can encode the same conditional independence
relations among the variables A, B, C as the Bayes Net above?
■ (A) A ⟺ B
□ (B) A⟺ C
□ (C) A⟺ E
■ (D) B ⟺ C
□ (E) B⟺ F
□ (F) C ⟺ D
□ (G) D⟺ E
(H) No edges need to be added.
(I) None of these enables the MRF to encode the same conditional independence relations as the Bayes Net.

21

From the Bayes net, we look at each pairwise combination of variables amongst A, B, and C, keeping in mind that D, E,
F are given, and find the 3 conditional independence relations:

• Given D, A depends on B.
• Given E, B depends on C.
• A ⟂⟂ C|B. (DBE would form a blocked common cause.)
• No additional conditional independence assumptions are created amongst A, B, C, if A and/or C are given.

Notice that for a common effect triple with known evidence, like ADB, A and B are dependent on the Bayes Net, but A
and B are independent on the MRF. So we need to add an edge between AB. Basically this shows us that for the common
effect triples, we should be connecting the parents. We try connecting AB, BC on the MRF. This satisfies all four of the
independence relations enumerated above in the Bayes Net.

• Given D, A depends on B. This condition is met because there’s now a direct AB edge.
• Given E, B depends on C. This is satisfied because there’s now a direct BC edge.
• A ⟂⟂ C|B. (DBE would form a blocked common cause.) This is satisfied because the ABC path on the MRF is

blocked when B is given.
• No additional conditional independence assumptions are created amongst A, B, C, if A and/or C are given. This is

met because A or C being given doesn’t block any new paths between any pair of variables.

22

SID:

(e) Let’s work with the following MRF. Note that F is not given, but D and E still are.

A B C

D E

F

(i) [2 pts] Using only the guaranteed conditional independence assumptions encoded by the MRF above, which of the
following expressions is equivalent to P (A,B, C, F |D = d, E = e)?
■ (A) P (A|d)P (B|d, e)P (C|e)P (F |d, e)
■ (B) P (A|d, e)P (B|d, e)P (C|d, e)|P (F |d, e)
□ (C) P (A)P (B)P (C)P (F |d, e)
■ (D) P (A|d, e)P (B|d, e)P (C|A, d, e)P (F |A, d, e)
(E) None of the above

1. First choice is correct. Write out chain rule with the variables arranged in alphabetical order and then use conditional
independence relations to simplify. First we note the following:

• A ⟂⟂ E|D, so P (A|d, e) = P (A|d)
• B ⟂⟂ A|D,E, so P (B|A, d, e) = P (B|d, e).
• C ⟂⟂ A|E and C ⟂⟂ B|E and C ⟂⟂ D|E, so P (C|A,B, d, e) = P (C|e)
• F ⟂⟂ A|D,E and F ⟂⟂ B|D,E and F ⟂⟂ C|D,E, so P (F |A,B, C, d, e) = P (F |d, e)

Then we write out chain rule and simplify given the above inequalities.

P (A,B, C, F |d, e) = P (A|d, e)P (B|A, d, e)P (C|A,B, d, e)P (F |A,B, C, d, e)
= P (A|d)P (B|d, e)P (C|e)P (F |d, e)

2. Notice that P (A|d) = P (A|d, e) and P (C|e) = P (C|d, e) because A ⟂⟂ E|D and C ⟂⟂ D|E. So (B) = (A).
3. Note that P (A|d) ≠ P (A) because A is not ⟂⟂ D. P (B|d, e) ≠ P (B) because B is not ⟂⟂ D and B is not ⟂⟂ E. And
P (C|e) ≠ P (C) because C is not ⟂⟂ E

4. The fourth choice is correct because P (C|e) = P (C|d, e) = P (C|A, d, e) in our MRF, since C ⟂⟂ D|E and C ⟂⟂
A|D,E.

(ii) [2 pts] Using only the guaranteed conditional independence assumptions encoded by the MRF above, which of the
following are equivalent to P (A|B,C, d, e)? Keep in mind D = d and E = e are still given.

■ (A)

∑

f ′
P (A,B,C,d,e,f ′)

∑

a′ ,f ′
P (a′,B,C,d,e,f ′)

■ (B) P (A|d)
□ (C)

∑

b′,c′
P (A|b′, c′, d, e)

■ (D) P (A,B,C,d,e)
P (e)P (d|e)P (C|e)P (B|d,e)

(E) None of the above

1. P (A|B,C, d, e) = P (A,B,C,d,e)
P (B,C,d,e) =

∑

f ′
P (A,B,C,d,e,f ′)

∑

a′ ,f ′
P (a′,B,C,d,e,f ′) by summing out.

2. Note P (A|B,C, d, e) = P (A|d) because A ⟂⟂ C|D and A ⟂⟂ B|D and A ⟂⟂ E|D.
3. However, P (A|d) = P (A|d, e) ≠

∑

b,c P (A|b, c, d, e) because we cannot sum out over conditional variables; we can
only sum out over variables in front of the conditional.

23

4.
P (A|B,C, d, e) =

P (A,B, C, d, e)
P (B,C, d, e)

=
P (A,B, C, d, e)

P (e)P (d|e)P (C|d, e)P (B|C, d, e)
by chain rule on the denominator

=
P (A,B, C, d, e)

P (e)P (d|e)P (C|e)P (B|d, e)

Where the last step follows because D ⟂⟂ C|E (resulting in P (C|d, e) = P (C|e)), and C ⟂⟂ B|D,E (resulting in
P (B|C, d, e) = P (B|d, e)).

24

