
CS 188
Spring 2021

Introduction to
Artificial Intelligence Final

• You have approximately 170 minutes.

• The exam is open book, open calculator, and open notes.

• For multiple choice questions,

– □ means mark all options that apply
– # means mark a single choice

First name

Last name

SID

For staff use only:
Q1. Tic-Tac-Toe /11
Q2. I Want a Project Partner /20
Q3. Pac-ML /23
Q4. Keyboard Navigation /15
Q5. Accommodating Course Robot /17
Q6. Holiday Planning /14

Total /100

1

THIS PAGE IS INTENTIONALLY LEFT BLANK

2

SID:

Q1. [11 pts] Tic-Tac-Toe
In this problem we will look at the classic game of Tic-Tac-Toe. Albert is training his intelligent agent, AlbertBot, to compete
with MesutBot in a Tic-Tac-Toe competition.

Figure 1: Example winning state for the ’X’ player in a Tic-Tac-Toe game

Rules of Tic-Tac-Toe: Two players, X and O, take turns marking an empty square on a three-by-three board. A player wins by
placing three marks in a row, horizontally, vertically, or diagonally, as the ’X’ player has in the game shown above. If the board
fills up with neither player getting three in a row, then the game is a draw.

Assumptions: AlbertBot plays ’O’s, and always plays second. MesutBot has a fixed, unknown, possibly stochastic and
possibly suboptimal policy. AlbertBot can train against MesutBot as many times as we want prior to the real competition. In
the real competition, AlbertBot gets a reward of 1 if it wins against MesutBot, and a reward of 0 if it draws or loses.

Problem (Goal): Maximize AlbertBot’s expected reward, i.e., its expected probability of winning, in the real competition.

This problem is largely motivated from Sutton and Barto’s textbook, Reinforcement Learning: An Introduction, 2020 new
version, section 1.5.

(a) [2 pts] Among the following choices, which is a tightest upper bound on the number of leaf nodes in the complete game
tree of Tic-Tac-Toe, ignoring possible symmetries?
29 # 39 # 92 # 93 # 98 9! # 99
The first step has 9 choices, the second step has 8 choices, and so on. Therefore an upper bound is 9 × 8 × 7 ×⋯ × 1

(b) [2 pts] Is the minimax algorithm a suitable way of solving the problem specified above?
Yes, because the state space of Tic-Tac-Toe is small enough that running Minimax on the whole game tree is feasible.
Yes, but not due to the reason in the choice above.
No, because the minimax only works for zero-sum games, while Tic-Tac-Toe is not zero-sum.
 No, but not due to the reason in the choice above.
Minimax finds the optimal policy against the optimal opponent, under which case AlbertBot can never win, so minimax
will just return a random policy.

(c) [3 pts] Let MesutBot’s policy be �M (s, a), denoting the probability that MesutBot plays a in state s, and let Result(s, a)
denote the state resulting from playing a in s. Can we formulate AlbertBot’s Tic-Tac-Toe problem as an MDP, and, if so,
which of the following are correct formulas for the transition model P (s′ ∣ a, s)?
□ Yes, P (s′ ∣ a, s) = 1 if s′ = Result(s, a), 0 otherwise.
□ Yes, P (s′ ∣ a, s) = �M (s, a) if s′ = Result(s, a), 0 otherwise.
■ Yes, P (s′ ∣ a, s) =

∑

a′∶ s′=Result(Result(s,a),a′) �M (Result(s, a), a′).
■ Yes, P (s′ ∣ a, s) = �M (Result(s, a), a′) if s′ = Result(Result(s, a), a′) for some a′, 0 otherwise.
No, AlbertBot’s problem cannot be formulated as an MDP.
The last two are equivalent because the rules of Tic-Tac-Toe mean there is at most one action by MesutBot that can cause
a transition between any two given states. For a more general case, only the first of the two formulas would be correct.

We now introduce a new method for solving AlbertBot’s problem that works as follows:
(1) Let V (s) be a table, indexed by state, representing the value, i.e., the expected win probability starting in s. Let the initial

3

values for V (s) be 0.5, except the terminal states: for states with three ’X’s in a row, or drawn terminal states, we set an initial
value of 0, and for states with three ’O’s in a row, we set an initial value of 1.

(2) AlbertBot plays many practice games against MesutBot. In any state s, AlbertBot plays a∗ = argmaxa V (Result(s, a)), i.e.,
the best move according to one-step lookahead with V , breaking ties randomly.

(3) For each round (consisting of MesutBot’s move followed by AlbertBot’s move), let St denote the state before the MesutBot’s
move and St+1 denote the state after AlbertBot’s move. V is updated after each round according to the following equation:

V (St) ⟵ V (St) + �(V (St+1) − V (St))

where V (St) denotes the value of the state St and 0 < � < 1 is a hyperparameter.

(4)We updateV formany games. Then, in the real competition, V remains fixed andAlbertBot again plays a∗ = argmaxa V (Result(s, a)).

(d) [3 pts] There is at least one major problem in the method as introduced above that can be fixed to make it working better in
practice. Which of the following describes the problem, and proposes a reasonable fix to the problem? Choose all correct
statements. A statement is considered correct if and only if both the problem and the fix is described correctly.

□ AlbertBot cannot reason about the opponent (MesutBot’s) moves. The fix is to use self-play during training.
■ AlbertBot cannot reason about the opponent (MesutBot’s) moves. The fix is to train a neural network to predict the
opponent’s move given a certain state.
□ The training process lacks exploration. The fix is to use epsilon-greedy exploration during training and update the
value table for every action taken during training.
■ The training process lacks exploration. The fix is to use epsilon-greedy exploration during training, but update the
value table only for non-exploratory actions during training.
□ The training process requires full information about the opponent’s policy which we do not have access to. The fix is
to use Q-learning instead.
□ The training process requires full information about the opponent’s policy which we do not have access to. The fix is
to use policy iteration.
None of the above (for every sentence above either the problem or the fix is incorrect).
It is beneficial for Albert to learn a model of the opponent’s moving strategy. This can only be learned by playing with
the opponent, and not by self-play. The training process does not require full information about opponent’s policy. The
training process lacks exploration, but we should only update the value table for non-exploratory moves, since in the real
competition there will be no exploratory moves.

(e) [1 pt] Given that the problem described in the previous part is successfully addressed, what is a suitable schedule for the
value of �?
Constant close to 1
Constant close to 0
Increase asymptotically towards 1
 Decrease asymptotically towards 0
The � value should decrease asymptotically to 0. See the notes on reinforcement learning for details.

4

SID:

Q2. [20 pts] I Want a Project Partner
In 2035, CS 188 will provide an AI partner for your projects. The process of acquiring a partner works as follows:

• In the Begin state, you draw a random AI partner whose quality x is an integer drawn from a distribution P (X). P (X) is
non-zero over a single contiguous range of values [a, b], where b may be ∞. (Throughout this question, the variables x
and x′ will refer to integers in the range [a, b]) The cost of this draw is 0.

• Afterwards, you have two choices:

1. Stop: Keep the current partner, and go to the End state.
2. Draw: Pay c tokens to draw another AI partner whose quality comes from the same distribution P (X).

We denote state x to be the current quality of your partner. For example, one possible sequence of states and actions might be

Begin
Draw
←←←←←←←←←←←←←←←←←←←→ 1

Draw
←←←←←←←←←←←←←←←←←←←→ 2

Draw
←←←←←←←←←←←←←←←←←←←→ 5

Stop
←←←←←←←←←←←←←←←←←→ End

with you paying c for each of the second and third draws and getting a quality=5 partner by stopping. The reward for stopping
equals the quality of the agent that you get at the end. We assume no discounting, i.e., = 1.

(a) [6 pts] We will go through some steps to solve the problem as an infinite-horizon MDP.
(i) [1 pt] Assume x, x′ are positive integers, which of the following are true about the reward function R(s, a, s′) of this

MDP?
□ For all x, R(Begin,Draw, x) = −c
■ For all x, x′, R(x,Draw, x′) = −c
□ For all x, R(x, Stop, End) = −c + x
■ For all x, R(x, Stop, End) = x
None of the Above
From the problem description, you get a free Draw in the beginning. After that, each draw has reward −c. If you
choose to Stop, the reward will be the quality of the partner you get.

(ii) [1 pt] What can we say about the Q-values in this MDP?

□ Q∗(x,Draw) increases with x
■ Q∗(x,Draw) is a constant D, independent of x
□ Q∗(x,Draw) is a constant D for some (possible empty) sequence [a, ..., s] and thereafter increases with x
None of the Above
No matter what quality of agent you currently have, the expected return of Draw is the same every time.

(iii) [1 pt] True/False If it’s optimal to Stop at x, it’s optimal to Stop at any x′ > x.
 True
False
If it’s optimal to Stop at state x, then U∗(x) = Q∗(x, Stop) and Q∗(x, Stop) ≥ Q∗(x,Draw). For x′ > x, since
Q∗(x′, Draw) doesn’t change, Q∗(x′, Stop) = x′ > x = Q∗(x′, Draw). Thus, it will be optimal to Draw at any x′.

(iv) [1 pt] What can we say about the U -values in this MDP?

■ U∗(x) = maxa∈{Draw,Stop}Q∗(x, a)
□ U∗(x) increases with x
□ U∗(x) is a constant D, independent of x
■ U∗(x) is a constant D for some (possible empty) sequence [a, ..., s] and thereafter increases with x
None of the Above
First choice is correct because of the definition.
From the explanations in the previous part, we know U∗(x) = Q∗(x, Stop) = x when x gets very large. We also
know that Q∗(x,Draw) is a fixed value. Therefore, for x such that Q∗(x,Draw) > x, it is optimal to Draw, and
U∗(x) = Q∗(x,Draw), which is a constant.

5

(v) [1 pt] Assume at state s, the optimal policy is indifferent between Draw and Stop, i.e. Q∗(s,Draw) = Q∗(s, Stop).
What can we say about the optimal policy �∗ and optimal Q-values Q∗?

■ �∗(x) = Draw for all x < s
□ �∗(x) = Stop for all x < s
□ �∗(x) = Draw for all x > s
■ �∗(x) = Stop for all x > s
■ Q∗(s,Draw) = s
None of the Above
Following the previous explanation if at s, we have Q∗(s,Draw) = Q∗(s, Stop), then it’s optimal to Stop for x > s
and Draw for x < s. Q∗(s,Draw) = s because Q∗(s,Draw) = Q∗(s, Stop) = s.

(vi) [1 pt] Let D = Q∗(s,Draw) = Q∗(s, Stop). We are interested in finding D by solving a Bellman equation on
U -values. Which, if any, of the following equations are correct?

□ D = −c +D ⋅
∑∞
x=1 P (x)

□ D = −c +
∑∞
x=1 xP (x)

□ D = −c + ⋅
∑D
x=1 xP (x) +D ⋅

∑∞
x=D+1 P (x)

■ D = −c +D ⋅
∑D
x=1 P (x) +

∑∞
x=D+1 xP (x)

None of the Above
The bellman equation is U∗(s) = maxa∈{Draw,Stop}

∑

x T (s, a, x) ⋅ (R(s, a, x)+ U∗(x)). When x ∈ [1, D], U∗(x) =
D. When x ∈ [D + 1,∞), U∗(x) = x.
Therefore, to find D:
D = U∗(s) =

∑D
x=1 P (x) ⋅ (−c +D) +

∑∞
x=D+1 P (x) ⋅ (−c + x)

= −c +D ⋅
∑D
x=1 P (x) +

∑∞
x=D+1 xP (x)

(b) [4 pts] Now, suppose the P (X) is given in the table below, and suppose c = 3
4 . Remember we define D to be the Q value

of the state at which the optimal policy is indifferent between the two actions, i.e. D = Q∗(s,Draw) = Q∗(s, Stop).
x P(x)
1 1∕4
2 1∕4
3 1∕4
4 1∕4

(i) [2 pts] What is D? (hint: it’s an integer) 2
D = − 3

4 +D ⋅
∑D
x=1 P (x) +

∑x
x=D+1 P (x)

Plugging value 2, the equation holds.
(ii) [1 pt] What is U∗(3) 3

Once we figure out D = 2, we know U∗(3) = 3 because 3 > 2.
(iii) [1 pt] What is �∗(1) Draw

Once we figure out D = 2, we know �∗(1) = Draw because 1 < 2.

(c) [3 pts] Now suppose that c = 1, for the entire partner-drawing process, x ∈ {1, 2, 3, 4, 5, 6}, and the distribution of x,
P (X) can be one of Puniform(X) or Pbiased(X). The two distributions are shown in the table below:

x Puniform(x) Pbiased(x)
1 1∕6 1∕2
2 1∕6 1∕10
3 1∕6 1∕10
4 1∕6 1∕10
5 1∕6 1∕10
6 1∕6 1∕10

Define Duniform = D when P (X) is Puniform(X), and define Dbiased = D when P (X) is Pbiased(X). Define Quniform,
Qbiased, Uuniform, Ubiased similarly.

6

SID:

(i) [1 pt] Which of the following is true?
 Duniform > Dbiased
Duniform < Dbiased
Duniform = Dbiased
Duniform > Dbiased because Puniform(X) has a higher mean, which results in higher expected returns for the action
Draw.

(ii) [2 pts] Given Dbiased = 2, which of the following are necessarily false?
■ U∗

uniform(1) = U∗
biased(1)

■ U∗
uniform(2) = U∗

biased(2)
□ U∗

uniform(3) = U∗
biased(3)

□ U∗
uniform(4) = U∗

biased(4)
None of the Above
IfDbiased = 2, andDuniform > 2, then U∗

uniform(1) > 2 and U∗
uniform(2) > 2. Therefore, they cannot equal to U∗

biased(1)
and U∗

biased(2), respectively.

7

(d) [7 pts] Suppose that AI agents are produced by two manufacturers, m1 and m2. m1 manufactures agents whose qualities
come from Puniform(X) and m2 manufactures agents whose qualities come from Pbiased(X).
Throughout the partner-selecting process, you will be drawing partners from exactly one of the two manufacturers, with
an a priori probability of 0.5 for each. Moreover, agents manufactured by m1 and m2 might have slightly different pitches
of voice V , such that agents whose qualities come from Puniform(X) have a 0.8 probability of having “high” pitches while
agents whose qualities come from Pbiased(X) have only a 0.6 probability chance of having “high” pitches.
You are still faced with a decision between Draw and Stop. However, before you perform any actions, you can listen to
the voice of your AI agent. This problem can be formulated as a decision network, as shown in Figure 2.

Q∗
pm
(x, a)

Action (Draw∕Stop)

M

V

M P (M)
m1(uniform) 0.5
m2(biased) 0.5

M V P (V |M)
m1(uniform) high 0.8
m1(uniform) low 0.2
m2(biased) high 0.6
m2(biased) low 0.4

Figure 2: Decision network and associated conditional distributions for the problem.

(i) [2 pts] DefineEUx(a|e) as “the expected utility of executing action a from state x given evidence e", i.e. EUx(a|e) =
∑

m P (m|e) ⋅ Q
∗
Pm
(x, a). Note Q∗

Pm
represents the optimal Q-values when drawing from the quality distribution Pm

associated with manufacturer m, i.e. when m = m1, Q∗
Pm

is Q∗
uniform. What is EU2(Draw)?

 0.5 ⋅Q∗
uniform(2, Draw) + 0.5 ⋅Q∗

biased(2, Draw)
Q∗

uniform(2, Draw)
Q∗

biased(2, Draw)
1

6 ⋅Q
∗
uniform(2, Draw) +

1
10 ⋅Q

∗
biased(2, Draw)

EU2(Draw) = P (M = m1) ⋅Q∗
uniform(2, Draw) + P (M = m2) ⋅Q∗

biased(2, Draw)

(ii) [2 pts] Define MEUx(e) as “the maximum expected utility from state x given evidence e", i.e. MEUx(e) =
maxa EUx(a|e). What isMEU2(∅)?
 0.5 ⋅ U∗

uniform(2) + 0.5 ⋅ U∗
biased(2)

U∗
uniform(2)

U∗
biased(2)

1
6 ⋅ U

∗
uniform(2) +

1
10 ⋅ U

∗
biased(2)

MEU2(∅) = maxa∈{Draw,Stop} EU2(a)
= maxa∈{Draw,Stop} P (M = m1) ⋅Q∗

uniform(2, a) + P (M = m2) ⋅Q∗
biased(2, a)

= P (M = m1) ⋅ U∗
uniform(2) + P (M = m2) ⋅ U∗

biased(2)

(iii) [3 pts] Define V PIx(E′
|e) as “the value of observing E′ given our current evidence e from state x". Given that

Duniform = 3 and Dbiased = 2, for which state(s) x is V PIx(V) > 0 (Remember V represents the pitches of voice of
the AI agents)?
□ 1 □ 2 □ 3 □ 4 □ 5 □ 6 None of the above
We start off with MEUx(V) = P (V = ℎigℎ) ∗ MEUx(V = ℎigℎ) + P (V = low) ∗ MEUx(V = low). We know
that
1. MEUx(V = ℎigℎ) = P (W = w1 ∣ V = ℎigℎ) ∗ U∗

uniform(x) + P (W = w2 ∣ V = ℎigℎ) ∗ U∗
biased(x)

2. MEUx(V = low) = P (W = w1 ∣ V = low) ∗ U∗
uniform(x) + P (W = w2 ∣ V = low) ∗ U∗

biased(x)
Plugging 1 and 2 into the first equation, we get
MEUx(V) = P (W = w1, V = ℎigℎ) ∗ U∗

uniform(x) + P (W = w2, V = ℎigℎ) ∗ U∗
biased(x) + P (W = w1, V =

8

SID:

low) ∗ U∗
uniform(x) + P (W = w2, V = low) ∗ U∗

biased(x)
Combining the probabilities, this simplifies to, P (W = w1) ∗ U∗

uniform(x) + P (W = w2) ∗ U∗
biased(x) = MEUx(∅)

9

Q3. [23 pts] Pac-ML
In this problem we will build classifiers to predict a binary target attribute y ∈ {0, 1}.

(a) [4 pts] In this part we will assume that examples are described by a single real-valued attribute x1.
(i) [1 pt] Here are three data points:

y 0 0 1
x1 1 2 3

Are these data points linearly separable?

 Yes # No

The separator x1 > 2 classifies the examples correctly.
(ii) [1 pt] Let’s add a few more data points in our dataset.

y 0 0 1 0 0 1
x1 1 2 3 4 5 6

Are these data points linearly separable?

Yes No

No X1-threshold can perfectly separate the data points.
(iii) [2 pts] The data can be augmented by adding a second feature x2 = f (x1) for some function f . Which of the

following candidates for f will render the data in the previous question linearly separable? For your convenience,
the values of sin(x) when x ∈ {1, 2, 3, 4, 5, 6} are {0.84, 0.91, 0.14,−0.76,−0.96,−0.28}.

□ x2 = x31
□ x2 = sin(x1)

□ x2 = x1 mod 2
■ x2 = x1 mod 3

Only x mod 3 can lead to perfect separation. The data points with label y = 1 will stay on the x-axis while all the
data points labeled y = 0 will have a positive x2 coordinate.

For the remainder of this question we consider examples described by three binary attributes. The training data are as follows:

y 0 0 0 0 0 1 1 1 1 1
x1 1 0 0 0 0 1 0 0 1 1
x2 0 0 1 0 0 1 1 1 1 1
x3 0 0 0 0 0 0 1 1 0 0

(b) [4 pts]
Let us first try a naive Bayes classifier, for which we estimate the necessary probability model P̂ from the data.
(i) [1 pt] Given a new data point x′1, x

′
2, x

′
3, which of the following are correct expressions for the predicted label y′ of

that data point using the naive Bayes classifier? Note that � is a normalizing constant.

□ argmaxy �P̂ (y|x′1)P̂ (y|x
′
2)P̂ (y|x

′
3)

□ argmaxy �
∏3

i=1 P̂ (x
′
i|y)

■ argmaxy �P̂ (y)
∏3

i=1 P̂ (x
′
i|y)

■ argmaxy P̂ (y)
∏3

i=1 P̂ (x
′
i|y)

This is just the argmax of the formula for the probability distribution of the label given the evidence using Bayes
rule and the “naive” assumption.

(ii) [1 pt] How many parameters need to be estimated for P̂ ? Here, "parameters" are the conditional and/or marginal
probabilities needed in the naive Bayes model. Do not count parameters that can be calculated using the sum-to-1
constraint.

10

SID:

4
 7

8
10

1 parameter P (y = 1) and two parameters for each P (xi|y) term, one for the case y = 1 and one for y = 0.
(iii) [1 pt] If we discard all the conditional independence assumptions of the naive Bayes model, how many parameters

does P̂ require? (Again, do not count parameters that can be calculated using the sum-to-1 constraint.)

9
12

 15
16

With no conditional independence, we need the full joint distribution for four variables; 24 − 1 = 15.
(iv) [1 pt] A new, unlabeled data point arrives with an extra feature x4. There are no previous training data to estimate the

parameters associated with x4, but it is still possible to make a prediction that incorporates x4 using Laplace smooth-
ing. Predicting y using x4 and Laplace smoothing in this case will necessarily give identical results to predicting y
while ignoring x4 altogether.

 True # False

Laplace smoothing provides pseudocounts for P̂ (x4|y) that are the same for both values of y, so observing x4 does not
affect the posterior for y.

(c) [3 pts] Now we consider decision trees for classifying these examples. We include the data here as well for convenience.
y 0 0 0 0 0 1 1 1 1 1
x1 1 0 0 0 0 1 0 0 1 1
x2 0 0 1 0 0 1 1 1 1 1
x3 0 0 0 0 0 0 1 1 0 0

(i) [1 pt] Are all decision trees linear classifiers?

Yes No

Decision trees can represent any function, including nonlinear ones.
(ii) [1 pt] Which of x1, x2, and x3 has the highest information gain?

x1 x2 # x3

Splitting with x2 first will lead to better split. You don’t really need to compute the information gains, you can just
visually see that x2 will lead to an almost perfect split.

(iii) [1 pt] An adversary would like to flip one of the input bits in the first data column, so that the decision tree learning
algorithm cannot fit the training data exactly. Which bit should be flipped?

x1 x2 # x3

The algorithm can always fit the data perfectly unless there are two identical examples with different labels. Flipping
x2 to 1 creates such a pair.

(d) [4 pts] For this part, we consider logistic regression and we ignore the attribute x3.
(i) [2 pts] Which of the following neural networks are capable of representing a logistic regression model, assuming

that the “Logistic” nodes implement the logistic function g(z) = 1
1+e−z ?

11

□

1

w0 ×

x1

x2

w1

w2

×

×

+ ReLU

y

Loss

■

1

w0 ×

x1

x2

w1

w2

×

×

+ Logistic

y

Loss

□

1

w0

×

x1

x2

w1

w2

×

×

Logistic

Logistic

Logistic +

y

Loss

■

1

w0 ×

x1

x2

w1

w2

×

×

+ Logistic ReLU

y

Loss

No ReLUs appear in logistic regression, so the top left is wrong. However, in the bottom right expression the ReLU oper-
ation is performed on the logistic function, which is always greater than zero hence ReLU (logistic(x), 0) = logistic(x),
i.e. the ReLU ends up being an identity function. The top right choice is wrong as adding the individual logistic functions
does not create one function that models a probability of an event.
(ii) [2 pts] Which of the following expressions is the correct gradient descent update rule for parameterw2 in the weight

vector w? Assume that the loss function is the squared loss 1
2 (y − ℎw(x))

2, that ℎw(x) =
1

1+e−wT x
, that wT x denotes

the inner-product and that � is the learning rate. Hint: the derivative of the logistic function g(z) = 1
1+e−z is

g′(z) = g(z)(1 − g(z)).

w2 ← w2 − �
(

y − 1
1 + e−wT x

)

1
1 + e−wT x

(

1 − 1
1 + e−wT x

)

x2

w2 ← w2 − �
(

y − 1
1 + e−wT x

)

1
1 + e−wT x

(

y − 1
1 + e−wT x

)

x2

w2 ← w2 + �
(

y − 1
1 + e−wT x

)

1
1 + e−wT x

x2

 w2 ← w2 + �
(

y − 1
1 + e−wT x

)

1
1 + e−wT x

(

1 − 1
1 + e−wT x

)

x2

Although we are doing gradient descent, the correct sign is + since we obtain a “−1" from the differentiation of the
loss function. The detailed derivation can be found in the textbook.

(e) In this question we explore using approximate Q-learning to train a robot to complete a fixed, 2D grid maze in the fewest
timesteps possible. The Q-function Q(s, a) and policy �(s) will be represented by neural networks with input vector
s =

[

x y
]

, corresponding to the robot’s x and y coordinates in the grid, and actions a ∈ {1, 2, 3, 4} representing {North,
South, East, West} respectively.

12

SID:

Albert trains the neural network shown below to learn his Q-values, where wx, wy, wa are scalar weights and bx, by, ba
are scalar biases.
q(s = (x, y), a) is the target Q-value calculated using transitions (assume that this is the value we want to get close to).
The labels D,E, F ,G represent the output value of the preceding node:

x

y

wx

wy

×

×

+

bx

+

by

D
ReLU

E
+

F

G

a

wa

×

ba

+

q((x, y), a)

Loss

(i) [2 pts] Which of the following are true about the above neural network? Assume that we use an arbitrary differen-
tiable loss function for the Loss node.

□ Using a sigmoid activation instead of the currently used ReLU activation will lead to minimal loss in fewer
iterations of training.
□ As long as we train on enough data, we can guarantee a validation accuracy at least as good as our training
accuracy.
■ Removing bx will not affect the expressivity of the neural network.
□ During backpropagation, we compute)Loss

)wa
, which we then can use to help compute)Loss

)wx
and)Loss

)wy
.

None of the above

1. Sigmoid vs. ReLU won’t necessarily lead to less or minimal loss.
2. We can’t guarantee anything about our validation accuracy regardless of how long we train.
3. bx and by are summed together, and could equivalently be replaced by a single bias term without compromising

the expressiveness of the neural network.
4. Although we compute)Loss

)wa
in backpropagation, we don’t need it to compute)Loss

)wx
or)Loss)wy

.

(ii) [2 pts] Which of the following are equivalent to)Loss
)bx

?

■)Loss
)F ⋅)F)E ⋅

)E
)D

■)Loss
)F ⋅)F)E ⋅

)E
)D ⋅

)D
)bx

■)Loss
)F ⋅

(

)F
)E ⋅

)E
)D ⋅

)D
)bx

+)F
)G ⋅

)G
)ba

⋅)ba)bx

)

■)Loss
)F ⋅

(

)F
)E ⋅

)E
)D ⋅

)D
)bx

+)F
)G ⋅

)G
)bx

)

None of the above
All of the above can be simplified into)Loss

)F ⋅)F)E ⋅
)E
)D because)D

)bx
= 1 and)ba

)bx
=)G

)bx
= 0.

(iii) [2 pts] Which of the following loss functions should Albert use for this neural network?
 Mean-squared-error loss: L(ŷ, y) = (y − ŷ)2

L(ŷ, y) =

{

0 if y = ŷ
1 otherwise

13

Cross-entropy loss: L(ŷ, y) = −[t log y′ + (1 − t) log(1 − y′)] where t =zero-one loss, y′ = 1
1+e−ŷ

None of the above

Our goal is to get our neural network to learn how to predict Q-values as close to q((x, y), a).
1. Mean-Squared error loss works for this, because its define as the squared difference between the two values we

want to be similar.
2. The indicator function (also known as zero-one loss), won’t work because it doesn’t give us a reasonable metric

for how close our estimates are, and it does not yield a gradient.
3. This is an attempt to apply cross-entropy loss to the problem, which is not suitable since we are not performing

classification.

(f) After training the neural network for Q(s, a), Albert trains another neural network to return a distribution of actions to
take at the current state �(a|s). wn is a vector weight in ℝ4 and bn is a vector bias in ℝ4. This neural network is shown
below:

x

y

wx

wy

×

×

+

bx

+

by

ReLU

ReLU

+ ×

wn

+

bn

�(a|x, y)
softmax J

Q

The node Q in the above represents the neural network from the previous part, which takes in (x, y, a) and returns a Q-
value. �(a|x, y) is a vector containing a probability distribution over all possible actions the robot can take from a state.
Albert defines J as a function that computes the expected Q-value weighted by the probabilities of the policy network
output as follows:

J (�,Q, x, y) =
∑

a
�(a|x, y)Q((x, y), a)

We want to train �(a|x, y) to put higher probability on actions associated with larger Q-values.
(i) [1 pt] Which of the following can we use to appropriately update wy at every iteration?

□ Gradient descent
■ Gradient ascent
□ Stochastic gradient descent
□ Perceptron learning rule
None of the above

We’re maximizing a likelihood function, so we use gradient ascent.
(ii) [1 pt] Which of the following is / are the appropriate update rule(s) forwx based on the above neural network and J

function? We set � to be the learning rate.

□ wx ← wx − �∇wxJ

■ wx ← wx + �∇wxJ

□ wx ← wx + �
(

∇wxJ + ∇bxJ
)

□ wx ← wx − �
(

∇wxJ − |

|

|

∇bxJ
|

|

|

)

None of the above

This follows from the gradient ascent update rule, where we sum the previous weight with the gradient of the
likelihood function times the learning rate.

14

SID:

Q4. [15 pts] Keyboard Navigation
Pacman is navigating in a map shown in the figure below (following the QWERTY keyboard). There are N = 12 grid squares
in total. Each sqaure is labeled with a letter and its coordinate. Let Ct = (xt, yt) denote Pacman’s position at time step t, and it
can move to any of the 6 directions to (xt, yt + 1), (xt, yt − 1), (xt − 1, yt), (xt + 1, yt), (xt + 1, yt + 1), or (xt − 1, yt − 1) in the
next timestep. When Pacman attempts to move out of the map, i.e., xt+1 ∉ {1, 2, ..., 6} or yt+1 ∉ {1, 2}, it will stay in the same
square.

We assume that Pacman knows the layout of the map. However, Pacman does not know its position, and also does not know
whether the move succeeds (i.e., not staying in the same square) at each step. There are two sensors to help Pacman track its
position: (1) At is the number of neighboring squares for (xt, yt). For example, At = 4 when (xt, yt) = (2, 2). (2) Et is the
number of alphabetically adjacent letters among the neighboring squares. The table below summarizes the (deterministic) value
of Et for each square.

Ct Et
Q, W, R, Y, A, S, T 0

E, D, F, H 1
G 2

(a) At step t = 0, Pacman can be in any square of the map with equal probability. In this part, at each step t, Pacman can move
in any of the 6 directions with an equal probability. Note that Pacman can stay in the same square by taking an invalid
move out of the map. We denote Pr[Ct = (xt, yt)] as the probability of Pacman at position (xt, yt) at step t.
(i) [1 pt] Assume that Pacman does not have access to sensor signals. What is Pr[C1 = (2, 2)], i.e., the probability that

Pacman is at position (2, 2) when t = 1? Please fill in your solution as a fraction below. Please reduce the fraction
into the lowest terms. For example, 2∕72 should be simplified to 1∕36. Please fill in 0∕1 if the answer is 0.

1 / 12 Probability of Start at Q and move to W: 1∕12 ∗ 1∕6 = 1∕72. Similarly, probability of
start at A or S or E and move to W is also 1∕72. The probability of starting at W and remaining at W due to failed
action is 1∕12 ∗ 2∕6 = 1∕36. The total probability is 1∕72 ∗ 4 + 1∕36 = 1∕12

(ii) [1 pt] Pacman observes that E0 = 1. Given this evidence, what is Pr[C1 = (2, 2)|E0 = 1]?

1 / 24 . Because E0 = 1, C0 = E, D, F, H with probability 1/4 on each. Only if C0 = E,
taking one of the six actions takes Pacman from E to W. So the probability of Pacman "at S at time step 1" is
1∕4 ∗ 1∕6 = 1∕24.

(b) Pacman decides to track its location by particle filtering. Let (x(i)t , y
(i)
t) be the location of the i-th particle at step t. At step

t = 0, we have 4 particles initialized in {(1, 1), (1, 2), (6, 1), (6, 2)}.
(i) [2 pts] Assume that after one forward simulation update, these particles reach states {(2, 1), (2, 2), (6, 2), (6, 2)}

respectively. What is the probability of each of these transitions?

Particle 1 from (1, 1) to (2, 1): 1 / 6

Particle 4 from (6, 2) to (6, 2): 1 / 2 The transition probabilities from (1, 1) to (2, 1) is 1∕6.
The transition probabilities from (6, 2) to (6, 2) (probability of failed action) is 3∕6 or 1∕2.

(ii) [2 pts] What is the updated belief distribution based on the new particle values? Note that we have not incorporated
any observations.

Pr[C1 = (2, 1)] =
1 / 4

Pr[C1 = (2, 2)] =
1 / 4

15

Pr[C1 = (6, 2)] =
1 / 2

Among the 4 particles, 1 is at (2, 1), 1 is at (2, 2), 2 are at (6, 2), which results in the answer.
(iii) [2 pts] Pacman observes that A1 = 4. Please fill in the probabilities given the evidence.

Pr[C1 = (2, 1)|A1 = 4] =
1 / 2

Pr[C1 = (2, 2)|A1 = 4] =
1 / 2

Pr[C1 = (6, 2)|A1 = 4] =
0 / 1 The 2 particles at (6, 2) disagrees with the observation, thus

have a weight of 0. The other two particles have a weight of 1.

(c) In this part, Pacman’s goal is to reach the position (gx, gy) = (1, 2) with the minimal cost. The cost of a move from (xt, yt)
to (xt+1, yt+1) is 1 +Et+1. For example, a move from (3, 2) to (2, 2) has the cost of 1, and a move from (2, 2) to (3, 2) has
the cost of 2. Note that even if Pacman stays in the same square after the move, Pacman still needs to pay the cost; e.g.,
moving left from (1, 1) has the cost of 1. Knowing its position at step t = 0, Pacman performs a search to find the optimal
sequence of actions to take. Let ℎ(x, y) be the cost from (x, y) to (gx, gy).
(i) [3 pts] Which of the following are admissible heuristics for ℎ(x, y)? Note that we know (gx, gy) = (1, 2), i.e. the

letter Q.

■ |x − gx| + |gy − y|

■ min(|x − gx|, |gy − y|)

■ max(|x − gx|, |gy − y|)

■ 2min(|x − gx|, |gy − y|)

□ min(|x − gx|, |gy − y|) + 1

□ max(|x − gx|, |gy − y|) + 1

■ max(|x − gx|, |gy − y|) + I[x > 3], where I[x > 3] = 1 when x > 3, and I[x > 3] = 0 otherwise.
None of the above

The cost is always greater than or equal to theManhattan distance, to admissible heuristics to theManhattan distance
works. The last choice also works because both E and D has cost value 2.

(ii) [2 pts] In this part and onwards, Pacman does not know the position at step t = 0, but can infer possible positions
according to the evidence.
Pacman observes that A0 = 2 and E0 = 1 at step t = 0. What is the cost of the path found by A* Tree Search with
an admissible heuristics?

7

By the observations we can directly know that the starting position is H. An optimal path from H to Q is HYTREWQ
which has cost 7.

(iii) [2 pts] Pacman observes that A0 = 3 and E0 = 0 at step t = 0. We want to find an action sequence such that
Pacman is guaranteed to be in (g′x, g

′
y) = (1, 1) after performing this action sequence. We also want to minimize the

worst-case cost of this sequence among all possible initial positions (x0, y0). Pacman does not have access to At or
Et when t > 0. What is the worst-case cost of this action sequence among all possible initial positions?

6

By the observations, we know that the starting position is A or Y. Starting from A would give us a cost of 0, since
we are already at the goal. If we start at Y we can follow the path YTREWA with cost 6. The same sequence of
actions can make us stay at A if we initially start at A. Thus cost 6 is the worst case cost that guarantees we end up
at A = (1, 1).

16

SID:

Q5. [17 pts] Accommodating Course Robot
The CS188 GSIs are designing an instructional robot to improve the mood of the students.

At every timestep t, the robot stores in its state a list of ongoing CS188 assignments St, and the robot takes action At to release
a list of future assignments St+1. The released assignments St+1 are also improved by student mood and feedback from the
previous timestep t, denotedMt.

This gives us the Bayes net below.

M0 M1 M2 ... MN−1 MN Student mood

S0 S1 S2 ... SN−1 SN Robot state

A0 A1 A2 ... AN−1 Action

(a) [1 pt] Which of the below represent the conditional probability table for the variable St+1 in the Bayes net shown above?
We denote this quantity T (St+1), as it is the transition model for S at time t + 1.
□ P (St+1|St, At)
■ P (St+1|St, At,Mt)
□ P (St+1|St, At,Mt−1)
None of the above
Note that the Bayes net conditional probability tables are P (X|parents of X). In this case, the parents of St+1 are
St,Mt, At. This gives us P (St+1|St, At,Mt).

(b) [1 pt] Which of the below represent the conditional probability table for the variable Mt+1 with the Bayes net shown
above? We denote this quantity T (Mt+1), as it is the transition model forM at time t + 1.
□ P (Mt+1|Mt)
□ P (Mt+1|Mt, At)
□ P (Mt+1|St, At)
□ P (Mt+1|St)
□ P (Mt+1|St+1)
■ P (Mt+1|Mt, St+1)
None of the above
The only parents ofMt+1 areMt, St+1. Hence the CPT is P (Mt+1|Mt, St+1).

(c) [2 pts]What is the joint transitionmodel for variables (St,Mt) in the Bayes net above? We denote this quantity T (St+1,Mt+1).
Include all choices that can be proved to be equivalent using conditional independence assertions expressed by the Bayes
net.
■ P (St+1,Mt+1|St,Mt, At)
□ P (St+1,Mt+1|St,Mt)
■ T (St+1)T (Mt+1)
■ P (St+1,Mt+1|S1∶t,M1∶t, A1∶t)
□ P (St+1,Mt+1|S1∶t)

17

□ P (St+1,Mt+1|A1∶t)
□ P (St+1,Mt+1|M1∶t)
None of the above
The transition model is defined to be:

P (St+1,Mt+1|St,Mt, At) = P (St+1|St,Mt, At)P (Mt+1|St+1, St,Mt, At) (product rule)
= P (St+1|St,Mt, At)P (Mt+1|Mt, St+1) (conditional independence)
= T (St+1)T (Mt+1)

By conditional independence, we have P (St+1,Mt+1|St,Mt, At) = P (St+1,Mt+1|S1∶t,M1∶t, A1∶t)

(d) [2 pts] Is the above Bayes net Markovian in (St,Mt)?
 Yes, always Markovian
No, never Markovian
It is possibly Markovian, depending on whether the values m1∶t are given
None of the above
We need to check if past variables are independent of future variables given the present variables. This is indeed true,
since ∀k > 0, (St+k,Mt+k) is conditionally independent of S0∶t−1 andM0∶t−1 given (St,Mt).

(e) [2 pts] You decide the above Bayes net is too complex, and want to try to simplify it down to the MDP format we’ve
learned in class, where the transition dynamics are given by P (zt+1|zt, at) for some single state variable zt, instead of the
transition functions you computed in earlier subparts of this problem. What are valid approaches to do this?
□ No modifications needed.
■ Redefine states to be zt = [st, mt]
■ Redefine states to be zt = [st, mt−1],∀t ≥ 1
■ Perform variable elimination on mt,∀t
■ Perform variable elimination on st,∀t
None of the above
To use the transition function T (st, at, st+1), we need to make the next state Markovian in the sense that it depends only
on the previous state and previous action. All choices that merge the st and mt (as long as they are connected by an edge)
into a single state tuple, will give us the desired behavior.
Note that if we do variable elimination on the mt or the st’s, this equivalently gives us a Bayes net of the following form.
zt = mt or st, depending on which one was left after eliminating.

Z0 Z1 Z2 ... ZN−1 ZN

A0 A1 A2 ... AN−1

This Bayes net exactly models the MDP seen during class, where the transition function is P (zt+1|zt, at)

For the remainder of the question, we denote the transitions in this setting as (st, mt, at, rt, st+1, mt+1), where rt = R(mt+1), since
the reward is entirely dictated by the mood of the student, and not the state of the robot. We use discount factor .

(f) [2 pts] What is the discounted sum of rewards if the robot observes a sequence of student moods m0, ..., mN?
■ ∑N−1

t=0 tR(mt+1)

□ R(m1) + V ([s2, m2])
□ R(m1) + max

a1
Q([s2, m2], a1)

None of the above
At timestep 0, the robot receives reward R(m1). At timestep 1, the discounted reward received is 1R(m2). The very last

18

SID:

timestep, the discounted reward term is N−1R(mN). Hence the discounted sum of rewards is
∑N−1
t=0 tR(mt+1)

Note that the choices involving the V and Q functions are not correct as those assume acting optimally after the 0th
timestep, and acting optimally is not guaranteed to give us the sequence of student moods observed, m0, ..., mN .

(g) [2 pts] Say you wish to run Q-learning on some dataset of transitionsD = {(st, mt, at, rt, st+1, mt+1)}N−1
i=0 . Each transition

is generated by picking a state, taking an action, and observing the result.
You initialize all Q([st, mt], at) = 0,∀(st, mt), at, and then use the below approach, largely plugging in the Q-learning
algorithm from lecture:

1. Randomly select some transition from the dataset (st, mt, at, rt, st+1, mt+1).
2. Compute sample = rt + max

at+1
Q([st+1, mt+1], at+1)

3. Q([st, mt], at) ← �(sample) + (1 − �)Q([st, mt], at)

Given the transition dynamics encoded by the Bayes net in this problem, select whether or not this algorithm needs
additional modifications, and why.
Yes. Since the transition dynamics differ from an MDP, we need to account for that in our Q-learning update by
weighing the samples according to their likelihood of occurring.
 No. The samples are generated from the true dynamics and will, after a sufficient number of updates, represent the
empirical probabilities of the true transition probabilities.
Q-learning from lecture does not have an explicit transition function in its update formula, since we can assume that the
samples that we collect, after a sufficient number of updates, roughly approximate the transition functionP (st+1|st, at). For
the same reason, combined with the fact that the transition dynamics in the Bayes net of this problem are still Markovian
in (st, mt), we do not need to make any additional modifications to the algorithm above to make it behave like Q-learning
on standard MDPs.

(h) If we were to run value iteration, what would the update formula be for the value V ([st, mt]), the expected sum of dis-
counted rewards acting optimally from (st, mt)?

For each letter (A), (B), (C), (D), (E) fill in a single entry for the term corresponding to the correct equation. Recall the
definition of T (st+1), T (mt+1), and T (st+1, mt+1) from earlier subparts of this problem.

V ([st, mt]) ← (A) (B) (C)
[

(D) + (E) V ([st+1, mt+1])
]

(i) [1 pt] (A) max
a
max

mt
max

st
max

st,mt
∑

a
∑

st
∑

mt
∑

st,mt
1

(ii) [1 pt] (B) # ∑

a
 ∑

mt+1
∑

st+1
0 # 1

(iii) [1 pt] (C) ∑

st+1
T (st+1, mt+1) # T (mt+1) # T (st+1) # 0 # 1

(iv) [1 pt] (D) R(mt+1) #
N
∑

t=1
R(mt+1) # 0 # 1

(v) [1 pt] (E) # 1
Wecan simply apply the standard value iteration equation isV ([st, mt]) = max

a

∑

st+1,mt+1
T (st+1, mt+1)[R(mt+1)+V ([st+1, mt+1])],

which we can interpret as an expectation over next states (st+1, mt+1) of the sum of discounted rewards.
Thus we get the update:

V ([st, mt]) = max
a

∑

st+1,mt+1

P (st+1, mt+1|st, mt, at)[R(mt+1) + V ([st+1, mt+1])]

= max
a

∑

mt+1

∑

st+1

T (st+1, mt+1)[R(mt+1) + V ([st+1, mt+1])]

19

Q6. [14 pts] Holiday Planning
After a stressful exam period, you plan to spend some time traveling in your new programmable self-driving car. Given two
points on the map and a search procedure, the car calculates the optimal route from start to finish.

(a) Let’s first frame this problem as a search problem. Consider the following directed graph:

S

A

B C

D

E

F H

G

51

71 75

140

100 80 97

10199

211

The edges of the graph indicate the cost of the path between the two nodes connected by that edge. We start at node S
and we want to reach node G. For the following sub-questions, assume ties resolve in such a way that states with earlier
alphabetical order are expanded first.
(i) [1 pt] We first decide to use the graph-search version of Breadth-First Search (BFS) to find the path from S to G.

What is the correct order in which states are going to be expanded?

S, A, D, E, G
 S, A, B, D, C, E, F, G

S, A, B, D, E, G
S, A, D, F, H, G

When we expand S, the fringe is {A, B}. We first pop A from the fringe, and append D. Now the fringe is {B, D}.
We then pop B from the fringe and append C. Now the fringe is {D, C} so D is popped from the fringe first.

(ii) [2 pts] Now let’s take into account the path costs between nodes by running Uniform Cost Search (UCS). What is
the final path that is going to be returned by UCS?

S, A, D, E, G
S, A, B, D, C, E, F, G

S, A, B, D, E, G
 S, A, D, F, H, G

The UCS algorithm finds the shortest path from S to G, which is composed of the shortest path from S to D and the
shortest path from D to G, i.e. SADFHG.

(iii) [2 pts] Imagine that you are trying to implement informed search for a graph similar to the one above. Which of the
following statements are true? Select all that apply.

■ A heuristic function that is consistent must also be admissible.
□ The graph-search version of A∗ search is optimal, as long as our heuristic function is admissible.
□ A∗ search with a heuristic function ℎ(n) = 0 for every node n in the graph expands fewer nodes than UCS.
■ A non-negative heuristic that never overestimates the cost to reach the goal is admissible.
None of the above

Consistency implies admissibility. For A-star graph search we need consistency. If the heuristic is 0 then A-star is
equivalent to UCS. A non-negative heuristic that never overestimates the cost to reach the goal is admissible (this is
the definition).

20

SID:

(b) To account for probabilistic events, we will now frame the problem as a Markov Decision Process (MDP). We will focus
on a subset of the nodes from the graph above:

D

0

E

2

F

1

H

2

G

4

We start at node D and we want to reach node G. From D we can go either to node F or E. We denote the action of
moving from D to F as Move to F and the action of moving from D to E as Move to E. For other nodes, we say that we
Move when we go from the node to its neighbor in the direction of the edge. Specifically, we can Move from F to H ,
fromH to G, and from E to G.
(i) [2 pts] For actions Move to F, Move to E, and Move, we arrive at the destination node with a probability of 75%,

otherwise we transition to a special state called Broke. Which of the following values for the transition function are
accurate? Select all that apply.

□ T (D,Move, s) = 1
4 , for s ∈ {E, F }

■ T (s,Move, s′) = 3
4 , for (s, s

′) ∈ {(F ,H), (H,G), (E,G)}

■ T (s,Move, Broke) = 1
4 , for s ∈ {D,E, F ,H}

■ T (D,Move, G) = 0
None of the above

The transition probability to the Broke state is 1/4, and the transition probability is 3/4 to the desired state. The third
option is considered correct either way, since there is a typo in the problem (the action at D should be "Move to E/F"
instead of "move")

(ii) [2 pts] At any point we can choose to take the action Stop, which will transition us to the special state Done and
yield the reward indicated next to the node in the graph above. For instance, if we take the action Stop at node F ,
we obtain a reward of 1. Which of the following values for the reward function are accurate? Select all that apply.

■ R(G, Stop,Done) = 4
■ R(s,Move, s′) = 0, for (s, s′) ∈ {(F ,H), (H,G), (E,G)}
□ R(D,Move to E, E) = 2
■ R(s, Stop,Done) = 2, for s ∈ {E,H}
None of the above

Only the stop action can incur non-zero reward. Stopping at G incurs reward of 4, and stopping at E or H incurs
reward of 2.

(iii) [3 pts] Now recall the policy improvement equation:

∀s, �i+1(s) ← argmax
a

∑

s′
T (s, a, s′) [R(s, a, s′) + V �i (s′)]

We begin by performing value iteration given the initial policy �0:

States D F H E G
�0 Move to F Move Stop Move Stop
V �0 1.125 1.5 2 3 4

What is the updated policy �1 for each of the following states, given the value of the initial policy above? Use the
discount factor = 1.

States D F H E G
�1 Move to E Move Stop

21

For G: the only action is to stop. For F: the value of move is 1.5 while the value of stop is 1. For D: the value of stop
is 0, the value of move to E is 2.25, and the value of move to F is 1.125.

(iv) [2 pts] Consider the impact of the discount factor on the resulting policy. How would the policy �1 change if we
set the discount factor to = 0?

�(D) = Move to F, �(F) = Move, �(H) = Move, �(E) = Move, �(G) = Stop
 �(D) = Stop, �(F) = Stop, �(H) = Stop, �(E) = Stop, �(G) = Stop
�(D) = Move to F, �(F) = Move, �(H) = Stop, �(E) = Move, �(G) = Stop
�(D) = Move to E, �(F) = Move, �(H) = Move, �(E) = Move, �(G) = Stop

The accumulated discounted reward can only be 0 if we do not stop at the first time step.

22

