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Q1. [17 pts] They Hatin’, Patrolling (Search Formulation)

Recall that in Midterm 1, Pacman bought a car, was speeding in Pac-City, and the police weren’t able to catch him.
Now Pacman has run out of gas, his car has stopped, and he is currently hiding out at an undisclosed location.

In this problem, you are on the police side, tryin’ to catch Pacman!

There are still p police cars in the Pac-city of dimension m by n. In this problem, all police cars can move, with
two distinct integer controls: throttle and steering, but Pacman has to stay stationary. Once one police
car takes an action which lands him in the same grid as Pacman, Pacman will be arrested and the game ends.

Throttle: ¢; € {1,0, —1}, corresponding to {Gas, Coast, Brake}. This controls the speed of the car by determining
its acceleration. The integer chosen here will be added to his velocity for the next state. For example, if a police car
is currently driving at 5 grid/s and chooses Gas (1) he will be traveling at 6 grid/s in the next turn.

Steering: s; € {1,0,—1}, corresponding to {Turn Left, Go Straight, Turn Right}. This controls the direction of
the car. For example, if a police car is facing North and chooses Turn Left, it will be facing West in the next turn.

(a) Suppose you can only control 1 police car, and have absolutely no information about the remainder of p — 1
police cars, or where Pacman stopped to hide. Also, the police cars can travel up to 6 grid/s so 0 < v < 6 at
all times.

(i) [4 pts] What is the tightest upper bound on the size of state space, if your goal is to use search to
plan a sequence of actions that guarantees Pacman is caught, no matter where Pacman is hiding, or what
actions other police cars take. Please note that your state space representation must be able to represent
all states in the search space.

28mmn, *x 2™

There are mn positions in total. At each legal position, there are 7 possible speeds (0, 1, 2, 3, 4, 5, 6), so a
factor of 7 is multiplied. In addition, since change of direction depends on orientation of the car, another
factor of 4 is multiplied.

The only sequence of actions which guarantees that Pacman is caught is a sequence of actions which visits
every location. Thus, we also need to a list of m % n boolean to keep track of whether we have visited a
specific grid location, and that is another factor of 2"

(i) [3 pts] What is the maximum branching factor? Your answer may contain integers, m,n.

9

3 possible throttle inputs, and 3 possible steering inputs. The list of boolean does not affect the branching
factor.

(iii) [2 pts] Which algorithm(s) is/are guaranteed to return a path passing through all grid locations on the
grid, if one exists?
U] Depth First Tree Search B Breadth First Tree Search
[ | Depth First Graph Search B Breadth First Graph Search
Please note the list of boolean is in the state space representation, so we can revisit the same grid position
if we have to.

(iv) [2 pts] Is Breadth First Graph Search guaranteed to return the path with the shortest number of time
steps, if one exists?

® VYo O No

The Breadth First Graph Search is guranteed to return the path with the shortest amount of time, because
each edge here represent moving for 1 unit of time.

(b) Now let’s suppose you can control all p police cars at the same time (and know all their locations), but you
still have no information about where Pacman stopped to hide



)

(ii)

[3 pts] Now, you still want to search a sequence of actions such that the paths of p police car combined
pass through all m xn grid locations. Suppose the size of the state space in part (a) was Ny, and the
size of the state space in this part is /V,,. Please select the correct relationship between N, and N;

O N,=px*xN; O N,=pM O N, =(N)? @ None of the above

In this question, we only need one boolean list of size mn to keep track of whether we have visited a
specific grid location. So the size of the state space is bounded by N, = (28mn)P2™", which is none of
the above.

[3 pts] Suppose the maximum branching factor in part (a) was by, and the maximum branching factor in
this part is b,. Please select the correct relationship between b, and b,

O b,=px*b O b,=pn ® =) (O None of the above

For example, the case of p = 2 means two cars can do all 9 options, so the branching factor is 92 = 81. In
general, the branching factor is then b7.
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Q2. |17 pts] Search

For this problem, assume that all of our search algorithms use tree search, unless specified otherwise.

a) For each algorithm below, indicate whether the path returned after the modification to the search tree is

F h algorithm bel indicate whether th th ret d after th dification to th h t i
guaranteed to be identical to the unmodified algorithm. Assume all edge weights are non-negative before
modifications.

(i)

(ii)

[3 pts] Adding additional cost ¢ > 0 to every edge weight.

Yes No
BFS o O
DFS | @ O
ucs | O ®

[3 pts] Multiplying a constant w > 0 to every edge weight.

Yes No
BFs | @ O
DFS | @ O
ucs| @ O

(b) For part (b), two search algorithms are defined to be equivalent if and only if they expand the same states
in the same order and return the same path. Assume all graphs are directed and acyclic.

(i)

(ii)

[3 pts] Assume we have access to costs ¢;; that make running UCS algorithm with these costs ¢;; equivalent
to running BFS. How can we construct new costs cgj such that running UCS with these costs is equivalent
to running DFS? Mark all correct choices.

O cgj =0 O cgj =1 O cgj = ¢jj

® = O dj=cj+a O Not possible

Breadth-First Search expands the node at the shallowest depth first. Assigning a constant positive weight
to all edges allows to weigh the nodes by their depth in the search tree. Depth-First Search expands the
nodes which were most recently added to the fringe first. Assigning a constant negative weight to all edges
essentially allows to reduce the value of the most recently nodes by that constant, making them the nodes
with the minimum value in the fringe when using uniform cost search. Hence, we can construct new costs
cgj by flipping the sign of the original costs c;;.

[3 pts] Given edge weight ¢;; = h(j) — h(i), where h(n) is the value of the heuristic function at node
n, running UCS on this graph is equivalent to running which of the following algorithm(s) on the same
graph? Select all correct answers.

O DFS O BFS O Iterative Deepening

® Greedy O  Ax (O None of the above.

Greedy Search expands the node with the lowest heuristic function value h(n). If ¢;; = h(j) — h(i), then
the cost of a node n on the fringe when running uniform-cost search will be >_,. c;; = h(1) — h(start) +

h(2) — h(1) 4+ ...+ h(n) — h(n — 1) = h(n) — h(start). As h(start) is a common constant subtracted from
the cost of all nodes on the fringe, the relative ordering of the nodes on the fringe is still determined by
h(n), i.e. their heuristic values.



(c) Consider the following graph. h(n) denotes the heuristic function evaluated at node n.

)

(ii)

[2 pts] Given that G is the goal node, and heuristic values are fixed for all nodes other than B, for which
values of h(B) will A* tree search be guaranteed to return the optimal path? Fill in the lower and upper
bounds or select “impossible.”

0 <h(B)<_ 4 (O Impossible

An admissible heuristic is sufficient for A* tree search to be optimal. Recall the constraint for an
admissible heuristic: Vn,0 < h(n) < h*(n). Since all other nodes satisfy the constraint above, we just
need to enforce the constraint on node B, so that 0 < h(B) < h*(B) = 4.

[3 pts] With the heuristic values fixed for all nodes other than B, for which values of h(B) will A* graph
search be guaranteed to return the optimal path? Either fill in the lower and upper bound or select
“impossible.”

4 <hB)<_ 4 (O Impossible
We need a consistent heuristic for A* tree search to be optimal. Recall the constraint for a consistent
heuristic: VA,C'  h(A) — h(C) < cost(A,C). Since all other nodes satisfy the constraint above, we just
need to enforce the constraint on node B. Enforcing consistency along S — B, gives h(B) > 4, A — B gives
h(B) > 3, B— D gives h(B) < 4.
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Q3. [19 pts] M-O-D-E Pruning

For all parts of this question, write your final answer in the small box, but we encourage you to show
relevant work in the big box. A correct final answer is sufficient for full credit.

NOTE: In the pruning process, we are only concerned about returning the correct value of the root node.

(a) Minimax Tree Pruning

Hin NN [] []

Figure 1: Minimax Tree with b =3,d =3

Suppose we have a complete minimax tree (with exactly 1 maximizer and 1 minimizer, alternating), where all
nodes have branching factor b, and d total layers (an extra layer of maximizer is added, if d is not even)

(1) [2 pts] In the case of b = 3,d = 3, what is the total number of value nodes (denoted by squares at the

lowest layer)? Your final answer should be an integer.

Answer: 27

Count the diagram

(i) [3 pts] In the case of b = 3,d = 3, what is the maximum total number of value nodes whose value is
never explored because an upstream branch is pruned in one single set of values for the values
nodes. Your final answer should be an integer.

Answer: 16

EIEIEE OOE OO RIEE OHL O

(iii) [3 pts] Now we are changing the branching factor b, keeping d = 3. In the case of b = 5,d = 3, what is
the maximum total number of value nodes whose value is never explored because an upstream
branch is pruned in one single set of values for the value nodes. Your final answer should be an integer.



Answer: 96

There are 5% value nodes.

1. The first sub-tree (lower maximizer in the diagram) of all sub-trees in the second-to-last layer (minimizer
in the diagram) must have all child value nodes explored. That is 5? value nodes must be explored.

2. The remaining subtree of the first subtree in the second-to-last layer (minimizer with value 5 in previous
diagram) must have the first child value nodes explored. That is an additional (5 — 1) = 4 value nodes
must be explored.

So the total number of nodes unexplored is 5% — 52 — 4 = 96

(b) Mode Tree Pruning

Q
% % %
<& % < < < < < <
NN RN OO UUOOooooog

Figure 2: Mode Tree with b =3,d =3

We all know a-f pruning on minimax tree reduces the number of nodes explored to minimum, but what if we
change all the maximizer and minimizer nodes to mode nodes (symbolized by spades in the diagram), where
mode value (most frequent value) among the child nodes will be selected?

Important: Please note that, just like in o — § pruning, a child node n. can be pruned when its parent node
n, are absolutely sure that the value of n. will have no influence on the final value of the root node.

(i) [3 pts] In the case of b = 3,d = 3, what is the maximum total number of value nodes whose value is
never explored because an upstream branch is pruned in one single set of values for the values
nodes. Your final answer should be an integer.

Answer: 19
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OO0 EEUEED OO0 UUOOOOULO

(ii) [4 pts] Now we are changing the branching factor b, keeping d = 3. In the case of b = 5,d = 3, what is
the maximum total number of value nodes whose value is never explored because an upstream
branch is pruned in one single set of values for the values nodes. Your final answer should be an integer.

Answer: 98

There are 53 value nodes. Since it takes 3 to guarantee a majority in a branching factor of 5, only the
first 3 children of every sub-tree absolutely need to be explored.

1. The first layer, we absolutely need to explore the first 3 subtree of the root node

2. The second layer, we need to explore the first 3 children of the 3 needed nodes in the first layer. So
there are 32 = 9 needed nodes on the second layer that we guarantee to consider.

3. The last layer (value node layer), we again need to explore the first 3 children of the 9 needed nodes in
the second layer. So there are 33 = 27 value nodes that we guarantee to consider.

So the total number of nodes unexplored is 5% — 3% = 98



(iii) [4 pts] Now we are changing the depth d, keeping b = 3. In the case of b = 3,d = 4, what is the maximum
total number of value nodes whose value is never explored because an upstream branch is pruned
in one single set of values for the values nodes. Your final answer should be an integer.

Answer: 65

There are 3* = 81 value nodes. Since it takes 2 to guarantee a majority in a branching factor of 3, only
the first 2 children of every sub-tree absolutely need to be explored.

1. The first layer, we absolutely need to explore the first 2 subtree of the root node

2. The second layer, we need to explore the first 2 children of the 2 needed nodes in the first layer. So
there are 22 = 4 nodes on the second layer that we guarantee to consider.

3. The third layer, we need to explore the first 2 children of the 4 needed nodes in the first layer. So there
are 2% = 8 nodes on the second layer that we guarantee to consider.

4. The last layer (value node layer), we again need to explore the first 2 children of the 8 needed nodes in
the second layer. So there are 2* = 16 value nodes that we guarantee to consider.

So the total number of nodes unexplored is 3* — 2% = 65

10
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Q4. [15 pts| LQR

For all parts of this question, write your final answer in the small box, but we encourage you to show
relevant work in the big box. A correct final answer is sufficient for full credit.

Consider the following deterministic MDP with 1-dimensional continuous states and actions and a finite task horizon:

State Space S: R

Action Space A: R

Reward Function: R(s,a,s’) = —qs? —ra? where r > 0 and ¢ > 0

Deterministic Dynamics/Transition Function: s’ = cs + da (i.e., the next state s’ is a deterministic function
of the action a and current state s)

Task Horizon: 7' e N

Discount Factor: v = 1 (no discount factor)

Hence, we would like to maximize a quadratic reward function that rewards small actions and staying close to the
origin. In this problem, we will design an optimal agent 7; and also solve for the optimal agent’s value function V;*
for all timesteps.

By induction, we will show that V;* is quadratic. Observe that the base case ¢ = 0 trivially holds because V(s) =0
For all parts below, assume that V;*(s) = —p;s? (Inductive Hypothesis).

(a) (i) [5 pts] Write the equation for V;* ,(s) as a function of s, ¢, r, a, ¢, d, and p;. If your expression contains
max, you do not need to simplify the max.

() = max,eg —qs> — ra® — pi(cs + da)?

Vi(s) = max R(s,a,s") + V(s

= max —qs? — ra® — p,(s')?
a€R

= max —qs° — ra® — py(cs + da)?
acR

(ii) [5 pts] Now, solve for 77, (s). Recall that you can find local maxima of functions by computing the first
derivative and setting it to 0.

11



cdpy s
r+pid?

7r;f+1(s) =

We want to solve for the a that maximizes the value of V| (s). This is equivalent to maximizing —ra

pi+1(cs + da)?. Differentiate this function, set it to 0 and solve for a.

d
%[—mQ — pi(es + da)?] = —2ra — 2(cs + da)pid = 0

Solving for a, we find that:

cdpy

Tt T ks

T (s) =

Observe that the optimal policy is a linear function of the state.

12

2
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(b) [5 pts] Assume 7}, | = ky 41 for some kyy1 € R. Solve for pyyq in Vi (s) = —pi15%

Pir1 = q+ ki + pi(c+dki)?

1(s) = R(s, 7)1 (s),8") + Vi (s")
= —qs® —1(kip18)? — pis
= —qs® — r(ktﬂs)? —pe(es + d(kt+1s))2
= —(q + ’I"k?f_;ﬂ —l—pt(c + dkt+1)2)82

2
= —Pt+1S

13



Q5. [12 pts] Approximate Q-Learning

For all parts of this question, write your final answer in the small box, but we encourage you to show
relevant work in the big box. A correct final answer is sufficient for full credit.

We would like to train a Q function @,, parameterized by some trainable weights w. On observing a sample (s, a,r, ")
from the environment, we compare the old estimate of the @-value of (s,a): § = Qu(s,a) and the new estimate:
y =71+ maxy, Q(s’,a’) and use it to update w to minimize the squared error via gradient descent.

error(g,y) = (5 - v)*
= (Qw(57 a) - y)2
Treating the target y as a constant, differentiate error(g,y) with respect to w to derive the weight update rule
for w;:

aerror(A )
O, 2]

W; < W; — &

Let’s derive the update rules for different types of Q functions. For all parts, leave your answers in terms of
Y, Z}, fi(s7 CL), and Wy .«

(a) [4 pts] The Q-function we would like to train has the form Qy,(s,a) = > i~ w; fi(s,a). Please derive %T:T (4,y)
for this @) function.

derror (Q, y) _ 2(& - y)fz(5~ a)

8’LU1',

Other acceptable solutions are 2(3°1" ( w; fi(s,a) — y) fi(s,a), 2(Qu(s,a) — y) fi(s, a)

14
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(b) The Q-function we would like to train now has the form

m 2m
Qu(s,a) = Ze“’ifi(s’“) + Z w? fi(s,a)
i=0

1=m-+1

(i) [4 pts] For i € {1,...,m}, derive 8%:;f” (4,y) for this @ function.

i

Bger (g,y) = 2§ — ) fils, a)eviSi ()

Other  acceptable solufcions are  2(37L,evifien) Z?Z;Hl w?fi(s,a) — y)fi(s,a)evifilsa)
2(Qu(s,a) —y)fi(s, a)ewifi(s,a)
(i) [4 pts] Fori € {m+1,...,2m}, derive 33’"—71’;1_0’"(;(),3;) for this @ function.

%(g),y) = 4(9 — y)w; fi(s, a)

Other acceptable solutions are 4(3;",e" /() + Z?:mﬂ w} fi(s,a) — yw;fi(s,a), 4Qu(s,a) —
y)w; fi(s, a)

15



Q6. [23 pts| Probability and Bayes Net Representation

You're interested in knowing whether you would be Satisfied with your choice of snack(s), and so you decide to make
the prediction using probabilistic inference over a model with the following variables:

e S, whether or not you will be Satisfied.
e H, whether or not you will be Hungry.
e T, whether or not you will be Thirsty.

e P, whether or not you will have Pizza.

e B, whether or not you will have Boba.
Each of the variables may take on two values: yes or no.

(a) [1 pt] Your first idea for a probability model is a joint probability table over all of the variables. What’s the
minimum number of parameters you need to fully specify this joint probability distribution?

25 -1=31

(b) [3 pts] You decide this is too many parameters. To fix this, you decide to model the problem with the following
Bayes net instead:

Pr(B[H,T) Pr(S|P, B)
Q ° Pr(H) +b [ +h [+t ][04 || +s[+p [ +b]09
+h | 0.7 Pr(P|H) +b | +h | =t | 0.2 +s | +p | —b| 04
—h | 0.3 +p | +h | 0.8 +b | —h | +t | 0.9 +s | —p | +b | 0.7
G e +p | —h |05 || +b | —h| =t |05 || +s| —p| —b]oL1
Pr(7) —p | +h |02 || =b | +h | +t|06 || —s|+p | +b]| 0.1
Tt 106 || —p| -h|05|| =b|+h| —t|08||—=s|+p|—-b]| 06
e —t | 04 -b | —h |+t |01 —s | —p | +b] 03
-b| —-h| —t|05 —s | —p| —=b| 09

You do not know which snack(s) you are going for, but you know you are both hungry, thirsty, and definitely
getting Pizza. According to your model, what is the probability that you will be satisfied? (First, write out
the expression in terms of conditional probabilities from the model; then, plug in the values from the tables and
compute the final answer.)

0.6

Pr(+s

+ h,+t,+p) = Z Pr(+s| + p,b) - Pr(b| + h, +t)
b

= Pr(+s| + p, +b) - Pr(+b| + h, +t) + Pr(+s| + p, —b) - Pr(=b| + h, +t)
=09%x04+04x0.6
=0.6

16
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(c) [3 pts] You thought the last part required too much computation so you decide to use rejection sampling,
sampling variables in topological order. Write the probability of rejecting a sample for the following queries.

P(+p| +h) = 0.3
P(—s| +p) = P(—p| +h)P(+h)+P(—p| —h)p(—h) =0.2 x 0.7+ 0.5 x 0.3 = 0.29
P(4s|— h+1) = 1 — P(—h,+t) =1 — P(—h)P(+t) = 1 — 0.3 x 0.6 = 0.82

(d) Given that you are satisfied with your choice of snack(s), write out the variable elimination steps you would
take to compute the probability that you actually had boba, that is, Pr(+b | + s). (You do not have to plug
in the values from the tables.)

(i) [2 pts] Which of the following factors do we start with?
W r(n) W7 O pr(P) U pr(B) L] Pr(+s)
U pr(alp) W pr(plH) U Pr(BIH) U Pr(B|T) M r:(BHT)
U Pr(+s/P) U Pr(+s/B) U Pr(+s/p,H) [ Pr(+s|P,H,B) M Pr(+s|/P,B)

(ii) [1 pt] First, we eliminate H. What is the factor f; generated when we eliminate H?

O fi(P) O f((B) O A O fil+s)
O fi(P, B) O fi(p, T) O fi(P,+s) O AMB, T) O f(B,+s) O [T, +s)
. fl(PaBaT) O fl(Pva+S) O fl(B’T’+S)

(iii) [1 pt] Write out the expression for computing f; in terms of the remaining factor(s) (before H is elimi-
nated).

F(P.B,T) = > Pr(h)Pr(P | h)Pr(B | h,T)
h

(iv) [2 pts] Next, we eliminate T. What is the factor fy generated when we eliminate 7°?

fZ(PB)

Write out the expression for computing fo in terms of the remaining factor(s) (before T is eliminated).

f2(P,B) = > Pr(t)fi(t, P, B)

(v) [2 pts] Finally, we eliminate P. What is the factor fs; generated when we eliminate P?

f?(B* +9)

Write out the expression for computing f3 in terms of the remaining factor(s) (before P is eliminated).

fS(B’J,-g) — ZPY(+9 ‘ ]),B),fg(p, B)

P

17



(vi) [2 pts] Write out the expression for computing Pr(+b| 4+ s) in terms of the remaining factor(s) (after P is
eliminated).

f3(+b, +S)

Pr(+b| +s) = > f3(b,+5)

(e) Conditional Independence: For each of the following statements about conditional independence, mark if
it is guaranteed by the Bayes Net.

The Bayes Net is reproduced below for your convenience.

@ Cuaranteed O Not guaranteed

(G) [1pt] HILT

(ii) 1 pt) PLLT | B

(O Guaranteed ® Not guaranteed
(iii) [I1pt) HLT|S

(O Guaranteed ® Not guaranteed
(iv) 1pt] SLT|B

(O Guaranteed ® Not guaranteed
(v) I pt|] HLLS|P, B

@ Cuaranteed O Not guaranteed
(vi) 1 pt)] PLT|H, S

O Guaranteed ® Not guaranteed

18
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Q7. [18 pts] Decode Your Terror (HMM)

You go to Disney and ride the famous Tower of Terror ride, where an elevator rises and drops seemingly at random.
You're terrified, but vow to determine the sequence of rises and drops that make up the ride so you won’t be as
terrified next time. Assume the elevator F follows a Markovian process and it has m floors at which it can stop.
In the dead of night, you install a sensor S at the top of the shaft that gives approximate distance measurements,
quantized into n different distance bins. Assume that the elevator stops at T floors as part of the ride and the initial
distribution of the elevator is uniform over the m floors.

S Floors
3 m-1
3 m-2
1
0

You want to know the most probable sequence of (hidden) states Xi.7 given your observations y;.r from the sensor,
so you turn to the Viterbi algorithm, which performs the following update at each step:

(a) (i)

(ii)

melwe] = P(yelae) max [P(ze]ee—1)me-1[we]]

at[z:] = argmaxmy_q[zi_1]
Tt—1

[2 pts] What is the run time of the Viterbi algorithm to determine all previous states for this scenario?
Please answer in big O notation, in terms of T', m, and n, or write “N/A” if the run time is unable to be
determined with the given information.

Tm?

For each timestep that we want to decode, we loop over all states and consider the transition probability
to that state from all previous states. Thus, the runtime is T'm?, since we repeat this process for each
timestep (7'), and at each timestep we have a double for loop for states (one to compute m-value for
all states, one to compute arg max of previous m-values and transition probabilities, so m?). For more
details, see Note 6 (pg. 8).

[2 pts] What is the space complexity of the Viterbi algorithm to determine all previous states for this
scenario? Please answer in big O notation, in terms of T', m, and n, or write “N/A” if the space complexity
is unable to be determined with the given information.

Tm

We store only our a-value arrays (which keep track of the best transition along the path to the current

19



state). These are essentially back-pointers so we can reconstruct the best path. For a sequence of length
T, we then have a matrix of these pointers that is T x m, so we take up T'm space.

Eventually, we decide that the end of the ride is the exciting part, so we decide that we only wish to determine the
previous K states.

(b) ()

(ii)

[2 pts] What is the run time of the Viterbi algorithm to determine the previous K states? Please answer
in big O notation, in terms of T, K, m, and n, or write “N/A” if the run time is unable to be determined
with the given information.

Tm?

The run time is the same as (a)(i) since the forward pass part of the Viterbi algorithm is unchanged (e.g.,
we still need to consider all transition probabilities at all timesteps to determine the most likely path,
regardless of how far back we want to go).

[2 pts] What is the space complexity of the Viterbi algorithm to determine the previous K states? Please
answer in big O notation, in terms of T, K, m, and n, or write “N/A” if the space complexity is unable
to be determined with the given information.

Km

If we only wish to determine the previous K states, we only need to store a-values corresponding to the
previous K timesteps (since when we reconstruct the path, we only need to go K steps back). Thus, the
space complexity decreases to K'm from part (a)(ii).

Suppose you instead only wish to determine the current distribution (at time T') for the elevator, given your T
observations, so you use the forward algorithm, with update step shown here:

P(Xilye) oc P(ye|a:) Z P(X¢|lze—1)P(2t-1,Yo:t—1)

Tt—1

Additionally, from your previous analysis, you note that there are some states which are unreachable from others
(e.g., the elevator cannot travel from the top floor to the bottom in a single timestep). Specifically, from each state,
there are between GG/2 and G states which can be reached in the next timestep, where G < m.

() @)

(ii)

[2 pts] What is the run time for the forward algorithm to estimate the current state at time T, assuming
we ignore states that cannot be reached in each update? Please answer in big O notation, in terms of T',
m, G, and n, or write “N/A” if the run time is unable to be determined with the given information.

TmG

The normal run time for the forward algorithm is T'm? (very similar to Viterbi - we consider transition
probabilities from each state to each other state during our forward pass). However, if we can ignore those
states with zero transition probability, then we only need to consider G states when calculating our sum
for each state. Thus, the run time is reduced to TmG@G.

[2 pts] What is the space complexity for the forward algorithm to estimate the current state at time T,
assuming we ignore states that cannot be reached in each update? Please answer in big O notation, in
terms of T, m, G, and n, or write “N/A” if the space complexity is unable to be determined with the
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given information.

m

The space complexity for the forward algorithm is unchanged by how many states we can reach from each
state, so this is the same as the normal space complexity for the forward algorithm. It is m because we
store P(X,|y:) for each state and we only store one timestep (since we only care about the current state
probabilities).

Finally, assume that the number of elevator states is actually infinite (e.g., instead of stopping at floors, the elevator
can stop at any point along the elevator shaft).

(d)

(e)

[3 pts] What is the run time of the standard forward algorithm to estimate the current state at time 7" in this
case? Please answer in big O notation, in terms of 7', m, G, and n, or write “N/A” if the run time is unable
to be determined with the given information.

N/A

From part (c)(i), the run time of the forward algorithm is proportional to the number of states m. Thus as
m — oo, the run time grows to infinity. Both N/A and oo were accepted here.

[3 pts] Suppose you decide to use a particle filter instead of the forward algorithm. What is the run time of
a particle filter with P particles? Please answer in big O notation, in terms of T, m, G, n, and P, or write
“N/A” if the run time is unable to be determined with the given information.

TP

Assuming the time for resampling a single particle is constant, then the runtime is TP. At each timestep (total
of T'), we perform the time elapse and observation updates in constant time for each of the P particles.
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Q8. |12 pts] Raisins Again (VPI)

(a) Valerie from midterm 1 is still concerned about her cookie containing raisins so she decides to take a com-
pletely new approach. She wants to find out which factory (F) made the cookie because that can help her
find out if there are raisins (R) in the cookie. Thus she goes to the cookie company and asks a manager,
M, which factory the cookie was made in. However, she doesn’t fully trust his answer so she asks his supe-
rior, My, which factory he thinks it is in and how credible M; is. She knows there is a chain of n managers
like this where every manager can tell her which factory they think the cookie was made in and the credi-
bility of every manager working under them. This system can be modeled by the decision network below.

O—O—EO—)
: (%)
()

For this question assume 1 < i < k < n, choose one for each equation:

Could be true | Must be true | Must be false

VPI(M;) > VPI(M) o O O
VPI(My) > VPI(M,)
VPI(F) > VPI(M;)
VPI(F) > VPI(R)
V PI(My|M;) > VPI(My)
V PI(M;|My) > VPI(M,)

V PI(M;, M) = VPI(M;|M,,) + VPI(M;)

O O e @ O O e
O @ O O O @ O
® O O O @ O O

VPI(M;|F) >0
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Q9. [19 pts|] Machine Learning: Potpourri

(a)

(b)

(d)

(e)

(f)

(g)

(h)

[2 pts] What it the minimum number of parameters needed to fully model a joint distribution P(Y, Fy, Fb, ..., F},)
over label Y and n features F;? Assume binary class where each feature can possibly take on k distinct values.

2k™ —1

[3 pts] Under the Naive Bayes assumption, what is the minimum number of parameters needed to model
a joint distribution P(Y, Fy, Fy, ..., F},) over label Y and n features F;? Assume binary class where each feature
can take on k distinct values.

2n(k—1)+1

[1 pt] You suspect that you are overfitting with your Naive Bayes with Laplace Smoothing. How would you
adjust the strength &k in Laplace Smoothing?

@ Increase k (O Decrease k

[2 pts] While using Naive Bayes with Laplace Smoothing, increasing the strength &k in Laplace Smoothing can:

B ncrease training error U] Decrease training error

B 1ncrease validation error B Deccrease validation error

[1 pt] It is possible for the perceptron algorithm to never terminate on a dataset that is linearly separable in
its feature space.

O True @ False

[1 pt] If the perceptron algorithm terminates, then it is guaranteed to find a max-margin separating decision
boundary.

O True @ False

[1 pt] In multiclass perceptron, every weight w, can be written as a linear combination of the training data
feature vectors.

® True (O False

[1 pt] For binary class classification, logistic regression produces a linear decision boundary.

® True (O False

[1 pt] In the binary classification case, logistic regression is exactly equivalent to a single-layer neural network
with a sigmoid activation and the cross-entropy loss function.

® True (O False
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(J) (i) [2 pts] You train a linear classifier on 1,000 training points and discover that the training accuracy is only
50%. Which of the following, if done in isolation, has a good chance of improving your training accuracy?

B Add novel features [] Train on more data B Train on less data

(ii) [2 pts] You now try training a neural network but you find that the training accuracy is still very low.
Which of the following, if done in isolation, has a good chance of improving your training accuracy?

B Add more hidden layers B Add more units to the hidden layers
(k) Recall the following kernels covered in class:
1. Linear kernel: K (z,2) =z -2’ =3, a2
2. Quadratic kernel: K(z,2') = (v -2/ +1)? = Do T + 23wy + 1

3. Gaussian RBF kernel: K (z,2') = exp (— 525 ||z — 2/||?)
(i) [1 pt] There exists data that is separable with a Gaussian RBF kernel but not with a quadratic kernel.

® True (O False

(ii) [1 pt] There exists data that is separable with a linear kernel but not with a quadratic kernel.

O True @ False
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Q10. [24 pts| Perceptrons and Naive Bayes

(a) For each of the datasets represented by the graphs below, please select the feature maps for which the perceptron
algorithm can perfectly classify the data.

Each data point is in the form (x1,z2), and has some label Y, which is either a 1 (dot) or —1 (cross).

(i) [5 pts]
tx, B [ 2 1
% ° B o o2 4
B [ o2 |
‘ X1 B [ o Y]
* ° B o o
(ii) [5 pts]
1 x, O [z a2 1]
'. .° B [ oo o
"xxooxx"‘ B o oo jn
X1 B o Y]
O [a1 ]
(iii) [5 pts]
X7 B o2 1]
x o B [ oo o
X o O[5 22 |nl]
‘ 751 B oY)
O [0 )
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(b) [2 pts] Performing maximum likelihood estimation (MLE) to fit the parameters of a Bayes net to some given
data (with no Laplace smoothing) leads to which of the following learning algorithms?
B Naive Bayes
U] Perceptrons
U] Kernelization
[J Neural Networks
(O None

(c) Suppose that we are trying to perform a binary classification task using Naive Bayes. Y is the label, and (X,
X>) are the features. The domain for the features is anywhere on the 3 x 3 grid centered at (0,0). In other
words, X7 and X5 have the domain {—1,0,1}

Suppose that this is your dataset: (0, 1, +), (0, —1, =), (-1, 1, +), (-1, =1, =), (1, 0, +), (-1, 1, —), (0, O,
+). What is the learned value of each of the following? (Leave your answer as a simplified fraction)

(i) 1 pt] (ii) [1 pt] (iii) [1 pt]

PY = +) P(X, = 1Y = ) P(X2=0]Y = +)

4 2
= 0 1

(d) Now, to decouple from the previous question, assume that the learned CPTs are below.

Y X1 PI‘(Xl | Y) Y X2 PI‘(XQ | Y)

+ | -1 0.4 + | -1 0.2

+1 0 0.1 +1 0 0.2 Y [ Pr(Y)
+ ] 1 0.5 + |11 0.6 + 0.2
- | -1 0.6 - | -1 0.7 — 0.8
-1 0 0.3 -1 0 0.1

— 1 0.1 — 1 0.2

(i) [2 pts] What would be the predicted value for Y if the data point is at (0,0)?

Vv _

PY=—2,=0,22=0)=08x%03%0.1=0.024, P(Y =+,21 = 0,20 =0) = 0.2% 0.1 0.2 = 0.004
(i) [2 pts] What would be the predicted value for Y if the data point is at (1,—1)?

V-

P(Y =— 2y =1,20=—1)=08%0.1%0.7=0.056, P(Y = +,21 = 1,5 = —1) = 0.2 % 0.5 % 0.2 = 0.02
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Q11. [24 pts] Neural Network

The network below is a neural network with inputs z; and x5, and outputs y; and yo. The internal nodes are
computed below. All variables are scalar values. Note that ReLU (z) = max(0, z).

1

L+ ]

I_L\

L+
T

NENEN

N
e
N2
e
N

Figure 3: Neural Network

The expressions for the internal nodes in the network are given here for convenience:

hi = wiiz1 + wi2xs ha = w121 + WaaTs hs = w3171 + w3222

T =
=

(a)

(b)

ReLU(hy) ro = ReLU (hs) r3 = ReLU (h3) si1=x1+11+72 Sg=x2+T2+73

exp(s1) _ exp(s2)
exp(s1)+exp(s2) Y2 = exp(s1)+exp(sz)

Forward Propagation

Suppose for this part only, 1 = 3,20 = 5, w11 = —10, w12 = 7,wo; = 2, wes = 5, w31 = 4, w3z = —4. What
are the values of the following internal nodes? Please simplify any fractions.

(i) [ pt] hy = (i) [2 pts] s = (iii) [3 pts] y» =
5 39 ]+ezl:p(3)
(-10)*3+7x5=5 34+ ReLU((—10)*3+ 7% 5) + So =5+ ReLU(2+3+5%5) =
ReLU(2%x3+5%5)=3+5+ 5431 =36 ‘
31 = 39 Vs o exp(36)

exp(36)+exp(39)

1+exp(3)

Back Propagation

Compute the following gradients analytically. The answer should be an expression of any of the nodes in
the network (x1, 29, h1, ha, hs, 71,72, 73, 51, S2, Y1, Y2) or weights w11, w1z, wer, Waz, w31, wss (clarification during
exam: without derivative or partial derivative symbols). In the case where the gradient depend on the value of
nodes in the network, please list all possible analytical expressions, caused by active/inactive ReLU,
separated by comma.

Hint 1: If z is a function of y, and y is a function of x, the chain rule of taking derivative is: % = % * %
Yy T

Hint 2: Hint: Recall that for functions of the form g(z) = ————, 29 = g(z)(1 — g(x))

1+expla—z)’ Oz
(i) [1pt] 522 =

W21

(ii) [2 pts] 2 =

871)21
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0

h; is independent of weight wo;

Figure 4: Neural Network, copied from the previous page for reference

(iii) [2 pts] 2 =

8w31

O,xl

If the ReLU is active, the result is straightforward, and thus x;. If the ReLU is inactive, the gradient is 0
(iv) [2 pts] & =

67‘1 -

1

(v) [Bpts] 52+ =

14w +war, 1 +war, 1 +wiq, 1

The ReLU with output r; and the ReLU with output ro can be active or inactive independently
(vi) [3 pts] 22 =

832 -

Y12, or Yo (1 — y2)

_ exp(s2) _ 1
Y2 = exp(s1)texp(s2) ~ l4exp(si—s2)

Oya o o exp(s1—s2) o exp(s1+s2)

Tsz - y2(1 - y2) =WhnlYy2 = (1+ea:p(;17§2))2 - (e:z:p(sl)+lemp?52))2

Please note that, due to symmetry between y; and yo, % is also equivalent to the correct
answer. If you don’t believe it, try simplifying it!

(vii) [3 pts] g—ii =

See below

First of all, I want to apologize for making this mistake. This question turns out to be much harder than
expected. But if you managed to get this one right, you deserve the title of a True Gradient Champion!

The correct answer is (4 total terms):
y1y2(1 +win — ws1),y192(1 + wi1), y1y2(1 — wa1), Y172

This is how we get to it:

_ exp(s1) — 1
Y1 = exp(s1)+exp(s2) ~ l4exp(sa—s1)
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Oy1

When calculating Da1 this is the correct format for g(x) = because there is a negative sign is

1
14+exp(a—z)’
in front of s1. e can apply the rule to simply get g% =y1(1 —y1) = y1y2

But when calculating g%, this is NOT in the correct format, because now there is no negative sign in

front of s5. One way to resolve this is to create a fake variable to5 = —so, and g—zz =—1.

— 1 _ 1 _ 1
Now = 1+exp(sa—s1) ~ l4exp(—si+s2) ~ l+exp(—s1—ta)’

O 15}
Sl =gt — [y (1—y)](—1) = =192

which is the correct format again. At this point,

As seen in v, % = 1+w11 +w21,1+w21,1+w11,1

I Js
Similarly, Fr. = W21 + w31, Wa1, W31

In the end,

oy Oy Os1 Oy Os2
I = LTy P TR o 1+ + 1+ 1+ 1+ (— +
52y Ds; O D59 D1 Y1Y2 *{ w11 T Wai, w21, W11, } ( Y1y2) *{w21 w31,w21,w31}

Which can be expanded to this list (note that things can cancel out): y1y2(1 + wi; — ws1), y1y2(1l +
wi1), 1Yz (1 +wi1 +war —ws1), y1y2 (1 —ws1), y1y2, y1y2 (1 +wer —ws1), Y1y2 (1 +wi1 — war —ws1, y1y2(1+
wir — wa1), Y1y2(1 + wir — ws1), y1y2(1 + —war — war, y1y2(1 — war), y1y2(1 — ws;)

BUTN! Please note that the activity of ro actually affect both gii and gj?' So we need to remove 6
contradicting terms, including y1y2(1 + w11 + w21 — w31), y1y2(1 +war —w31), yry2(1 +wir —war —w31),

y1y2 (1 + w11 — war), y1y2(1 — w2l — ws1), y1y2(1 — war).

The easier way to think about this is, that if ro is activated, then the gradient will cancel out from the
two sides. If 75 is deactivated, it won’t appear at all.

We are left with 6 terms: y1y2(1+wi1 —w31), y1y2(1+wi1), y1y2(1—ws1), y1y2, y1y2 (1+wi —wa1), y1y2(1—
w31)

Removing the duplicates, we are left with the final 4 terms: y1y2(1 + w11 — ws1), y1y2(1 + wi1), yay= (1 —
w31), Y12

(c) [2 pts] In roughly 15 words, what role could the non-negative values in node ro play according to its location
in the network architecture?

Smoothing the inputs into the soft-max functions. (anything reasonable is acceptable)
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