
CS 188
Summer 2019

Introduction to
Artificial Intelligence Midterm 1

• You have approximately 80 minutes.

• The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation. All short answer sections can be successfully answered in a few sentences AT MOST.

• For multiple choice questions,

– � means mark all options that apply

– # means mark a single choice

– When selecting an answer, please fill in the bubble or square completely (and �)

First name

Last name

SID

Student to your right

Student to your left

Your Discussion TA (fill all that apply):

� Caryn (TTh 10:00am Wheeler)

� Bobby (MW 3:00 pm)

� Benson (MW 4:00 pm)

� Arin (TTh 10:00am Dwinelle)

� Mike(TTh 11:00am)

� Do not attend any

For staff use only:
Q1. They See Me Rolling (Search Problem) /21
Q2. Search Algorithms Potpourri /19
Q3. MDP Solvers /28
Q4. Model-Free RL /14
Q5. Game Trees /18

Total /100

1

THIS PAGE IS INTENTIONALLY LEFT BLANK

2

SID:

Q1. [21 pts] They See Me Rolling (Search Problem)
Pacman buys a car to start Rolling in the Pac-City! But driving a car requires a new set of controls because he can
now travel faster than 1 grid per turn (second). Instead of solely moving [North, South, East, West, Stop], Pacman’s
car has two distinct integers to control: throttle, and steering.

Throttle: ti ∈ {1, 0,−1}, corresponding to {Gas, Coast, Brake}. This controls the speed of the car by determining
its acceleration. The integer chosen here will be added to his velocity for the next state. For example, if Pacman is
currently driving at 5 grid/s and chooses Gas he will be traveling at 6 grid/s in the next turn.
Steering: si ∈ {1, 0,−1}, corresponding to {Turn Left, Neutral, Turn Right}. This controls the direction of the
car. For example, if he is facing North and chooses Turn Left he will be facing West in the next turn.

(a) [11 pts] Suppose Pac-city has dimension m by n, but only k < mn squares are legal roads. The speed limit of
Pac-city is 3 grid/s. For this sub-part only, suppose Pacman is a law-abiding citizen, so 0 ≤ v ≤ 3 at all time,
and he only drives on legal roads.

(i) [3 pts] Without any additional information, what is the tightest upper bound on the size of state space,
if he wants to search a route (not necessarily the shortest) from his current location to anywhere in the
city. Please note that your state space representation must be able to represent all states in the search
space.

4mn # 4k # 12mn # 12k # 16mn # 16k # 48mn # 48k

(ii) [3 pts] What is the maximum branching factor? The answer should be an integer.

(iii) [3 pts] Which algorithm(s) is/are guaranteed to return a path between two points, if one exists?

� Depth First Tree Search � Breadth First Tree Search

� Depth First Graph Search � Breadth First Graph Search

(iv) [2 pts] Is Breadth First Graph Search guaranteed to return the path with the shortest grid distance?

Yes # No

(b) [5 pts] Now let’s remove the constraint that Pacman follows the speed limit. Now Pacman’s speed is limited
by the mechanical constraints of the car, which is 6 grid/s, double the speed limit.

Pacman is now able to drive twice as fast on the route to his destination. How do the following properties of
the search problem change as a result of being able to drive twice as fast?

(i) [1 pt] Size of State Space:

Increases # Stays the same # Decreases

(ii) [1 pt] Maximum Branching Factor:

Increases # Stays the same # Decreases

For the following part, mark all choices that could happen on any graph

(iii) [3 pts] The number of nodes expanded with Depth First Graph Search:

� Increases � Stays the same � Decreases

3

(c) [5 pts] Now we need to consider that there are p > 0 police cars waiting at p > 0 distinct locations trying to
catch Pacman riding dirty!! All police cars are stationary, but once Pacman takes an action which lands him
in the same grid as one police car, Pacman will be arrested and the game ends.

Pacman wants to find a route to his destination, without being arrested. How do the following properties of
the search problem change as a result of avoiding the police?

(i) [1 pt] Size of State Space:
Increases # Stays the same # Decreases

(ii) [1 pt] Maximum Branching Factor:
Increases # Stays the same # Decreases

For the following part, mark all choices that could happen on any graph

(iii) [3 pts] Number of nodes expanded with Breadth First Graph Search:

� Increases � Stays the same � Decreases

4

SID:

Q2. [19 pts] Search Algorithms Potpourri
(a) [8 pts] We will investigate various search algorithms for the following graph. Edges are labeled with their costs,

and heuristic values h for states are labeled next to the states. S is the start state, and G is the goal state. In
all search algorithms, assume ties are broken in alphabetical order.

(i) [2 pts] Select all boxes that describe the given heuristic values.

� admissible � consistent � Neither

(ii) [2 pts] Given the above heuristics, what is the order that the states are going to be expanded in, assuming
we run A* graph search with the heuristic values provided.

Index 1 2 3 4 5 Not Expanded
S # # # # # #
A # # # # # #
B # # # # # #
C # # # # # #
D # # # # # #
G # # # # # #

(iii) [1 pt] Assuming we run A* graph search with the heuristic values provided, what path is returned?
S → A→ B → C → D → G # S → A→ C → G # S → A→ C → D → G
S → B → C → G # S → A→ C → D → G # S → A→ C → D → G
S → A→ B → C → G # None of the above

(iv) [2 pts] Given the above heuristics, what is the order that the states are going to be expanded in, assuming
we run greedy graph search with the heuristic values provided.

Index 1 2 3 4 5 Not Expanded
S # # # # # #
A # # # # # #
B # # # # # #
C # # # # # #
D # # # # # #
G # # # # # #

(v) [1 pt] What path is returned by greedy graph search?
S → A→ B → C → D → G # S → A→ C → G # S → A→ C → D → G
S → A→ C → D → G # S → A→ C → D → G # None of the above

5

(b) [4 pts] Consider a complete graph, Kn, the undirected graph with n vertices where all n vertices are connected
(there is an edge between every pair of vertices), resulting in

(
n
2

)
edges. Please select the maximum possible

depth of the resulting tree when the following graph search algorithms are run(assume any possible start and
goal vertices).

1
⌈
n
2

⌉
n− 1

(
n
2

)
None of the above

BFS # # # # #

DFS # # # # #

(c) [3 pts] Given two admissible heuristics hA and hB .

(i) [2 pts] Which of the following are guaranteed to also be admissible heuristics?

� hA + hB � 1
2 (hA) � 1

2 (hB) � 1
2 (hA + hB) � hA ∗ hB � max(hA, hB)

� min(hA, hB)

(ii) [1 pt] Consider performing A* tree search. Which is generally best to use if we want to expand the fewest
number of nodes?

hA + hB # 1
2 (hA) # 1

2 (hB) # 1
2 (hA + hB) # hA ∗ hB # max(hA, hB)

min(hA, hB)

(d) [4 pts] Consider performing tree search for some search graph. Let depth(n) be the depth of search node n and
cost(n) be the total cost from the start state to node n. Let Gd be a goal node with minimum depth, and Gc
be a goal node with minimum total cost.

(i) [2 pts] For iterative deepening (where we repeatedly run DFS and increase the maximum depth allowed
by 1), mark all conditions that are guaranteed to be true for every node n that could be expanded during
the search, or mark ”None of the above” if none of the conditions are guaranteed.

� cost(n) ≤ cost(Gc)
� cost(n) ≤ cost(Gd)
� depth(n) ≤ depth(Gc)

� depth(n) ≤ depth(Gd)
None of the above

(ii) [2 pts] What is necessarily true regarding iterative deepening on any search tree?

� Complete as opposed to DFS tree search
� Strictly faster than DFS tree search
� Strictly faster than BFS tree search
� More memory efficient than BFS tree search
� A type of stochastic local search
None of the above

6

SID:

Q3. [28 pts] MDP Solvers
(a) [5 pts] Consider the following finite-state MDP, with states A, B, C, and D. Each edge indicates an action

between states, and all transitions are deterministic. The edge weights denote the transition rewards. Assume
γ = 1 for all parts.

A

B

C D
x

1 1

1

For each of the states, let k be the first iteration in Value Iteration where the values could have converged
for some value of x (in other words, the smallest k such that Vk(s) = V ∗(s)). List all possible k for each state.
Mark k =∞ if the value for the state never converges.

State k

A

B

C

D

(b) [11 pts] Consider the following finite-state MDP, with states A, B, C, and D. Each edge indicates an action
between states, and all transitions are deterministic. Let x, y ≥ 0. The edge weights denote the transition
rewards. Assume γ = 1 for all parts.

A

B

C D
x

1
y 1

1

(i) [5 pts]

For each of the states, let k be the first iteration in Value Iteration where the values could have converged
for some nonnegative value of x or y (in other words, the smallest k such that Vk(s) = V ∗(s)). Find all
possible k for each state. Mark k =∞ if the value for the state never converges.

State k

A

B

C

D

7

(ii) [6 pts] Additionally, assume x+y < 1. For each of the states, let k be the first iteration in Policy Iteration
where the policy is optimal for a particular state (in other words, the smallest k such that πk(s) = π∗(s)).
Find k fora each state. Write k = ∞ if the policy for the state never converges. Assume tie-breaking
during policy improvement is alphabetical. (The graph is redrawn below for convenience)

A

B

C D
x

1
y 1

1

Let π0 be the following:

State (s) Action (π0(s))

A C

B C

C D

D D

State k

A

B

C

D 0

(c) (i) [2 pts] Mark all of the statements that must be true for any MDP.

� For no state s and for all policies π, V ∗(s) ≥ V π(s)

� For some state s and some policy π, V ∗(s) ≥ V π(s)

� For all states s and all policies π, V ∗(s) ≥ V π(s)
None of the above

(ii) [2 pts] Mark all of the statements that are true for value iteration.

� Each iteration of value iteration produces a value function that has higher value than the prior value
functions for all states.
� Each iteration of value iteration produces a value function that has value at least as good as the prior
value functions for all states.
� Value iteration can produce a value function that has lower value than the earlier value functions for
some state.
� At convergence, the value iteration does not change the value function for any state.
None of the above

8

SID:

(d) [8 pts] Consider an MDP alternating game, where Pacman takes turns with Ghost to stochastically take actions.

Pacman takes actions to maximize the expected score, whereas Ghost takes actions to minimize the expected
score. Both know the others strategy.

Let V ∗(s) be the value function for Pacman. Pacman and Ghost have identical transition, reward functions,
and action space. (Discounting is applied for Pacmans actions)

Derive the new Bellman equation for V ∗(s) in terms of γ, R, T , and V ∗:

V ∗(s) = (i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

For each blank (i) through (iv), mark the appropriate subexpression. If it is possible to write the expression
for V ∗(s) without a particular sub-expression, mark ”None”.

(i) [1 pt] # 1
2 # 1

3 # 2 # −1 # 3 # γ # None

(ii) [1 pt] # maxa # mina # None

(iii) [1 pt] # ∑
s′ # ∑

s′ T (s, a, s′) # None

(iv) [1 pt] # [# [R(s, a, s′)+ # [R(s, a, s′)− # None

(v) [1 pt] # maxa # mina # maxa′ # mina′ # None

(vi) [1 pt] # ∑
s′ # ∑

s′ T (s, a, s′) # ∑
s′′ # ∑

s′′ T (s′, a′, s′′) # None

(vii) [1 pt] # [# [R(s, a, s′)+ # [R(s, a, s′)−

[R(s′, a′, s′′)+ # [R(s′, a′, s′′)− # None

(viii) [1 pt] # 1
2V
∗(s′)]] # γV ∗(s′)]] # V ∗(s′)]] # 1

2V
∗(s′′)]]

γV ∗(s′′)]] # V ∗(s′′)]] # None

9

Q4. [14 pts] Model-Free RL
(a) [8 pts]

Consider the following MDP with state space S = {A,B,C,D,E, F} and action spaceA = {left, right, up, down, stay}.
However, we do not know the transition dynamics or reward function (we do not know what the resulting next
state and reward are after applying an action in a state).

(i) [4 pts] We will run Q-learning to try to learn a policy that maximizes the expected reward in the MDP,
with discount factor γ = 1 and learning rate α = 0.5. Suppose we observe the following transitions in the
environment. After observing each transition, we update the Q function, which is initially 0. Fill in the
blanks with the corresponding values of the Q function after these updates.

Episode Number State Action Reward Next State
1 A right 2 B
2 B right 10 C
3 B right -3 E
4 C stay -5 A

State Action Q(state, action)
A stay
A right
B right
C stay

(ii) [4 pts] We now observe the following samples:

Episode Number State Action Reward Next State
5 B down −5 E
6 B down −5 E
7 B up −2 B
8 B left −8 B
9 B left −8 A
10 B stay −6 B
11 A right 1 B

Continuing with the Q function from the last subproblem, we train the Q function on these samples.
What is Q(A, right)?

10

SID:

(b) [6 pts] We are now given a policy π and would like to determine how good it is using Temporal Difference
Learning with α = 0.5 and γ = 1. We run it in the environment and observe the following transitions.
After observing each transition, we update the value function, which is initially 0. Fill in the blanks with the
corresponding values of the Value function after these updates.

Episode Number State Action Reward Next State
1 A right 2 B
2 B right 12 C
3 B right −8 E
4 C down −6 F
5 F stay 12 F
6 C down −6 F

State V π(state)
A
B
C
D
E
F

11

Q5. [18 pts] Game Trees
(a) [4 pts] Please mark if the following statements are true or false, and provide a brief justification or counterex-

ample. Note a function, f(x), is monotonically increasing if f(a) > f(b) for all a > b.

(i) [2 pts] # True # False Alpha-beta pruning will prune the same branches after a monotonically
increasing function is applied to the leaves.

(ii) [2 pts] # True # False Expectimax ordering will choose the same actions after a monotonically
increasing function is applied to the leaves.

(b) [6 pts] Consider the following minimax tree, where the top layer is a maximizing node

Please determine the range of X and Y such that the dashed lines are pruned in Left-to-Right alpha beta
pruning. The solid lines should not be pruned for the values in your range. You might find −∞ and∞ helpful.
Note, pruning occurs from left to right and latter nodes are pruned in the case of ties.

(i) [3 pts] The range of X will be

≤ X <

(ii) [3 pts] The range of Y will be

≤ Y <

12

SID:

(c) [8 pts] You are a casino owner (triangle) who is frequented by risky gamblers (squares). Your goal is to
minimize the expected reward of the gamblers. Given the choice between lotteries, risky gamblers prefer the
lottery (circle) that has the highest possible payout. Each reward under a lottery is equally likely. In the case
of a tie between lotteries in maximum reward, the risky gambler will pick the lottery with the greater expected
value. All rewards are nonnegative integers. Note, pruning occurs from left to right and latter nodes are
pruned in the case of ties.

(i) [4 pts] For the scenario depicted in the above game tree, write the smallest possible Y such that the dotted
branches are pruned (and no solid branches are pruned). If you believe no such value of Y exists, write
“N/A”.

Y =

(ii) [4 pts] For the scenario depicted in the above game tree, write the smallest possible X such that the all
dotted branches are pruned (and no solid branches are pruned). If you believe no such value of X exists,
write “N/A”.

X =

13

