Local search

Instructors: Stuart Russell and Dawn Song

University of California, Berkeley
Local search algorithms

- In many optimization problems, \textit{path} is irrelevant; the goal state \textit{is} the solution.
- Then state space = set of “complete” configurations; find \textit{configuration satisfying constraints}, e.g., n-queens problem; or, find \textit{optimal configuration}, e.g., travelling salesperson problem.

- In such cases, can use \textit{iterative improvement} algorithms: keep a single “current” state, try to improve it.
- Constant space, suitable for online as well as offline search.
- More or less unavoidable if the “state” is yourself (i.e., learning).
Hill Climbing

- Simple, general idea:
 - Start wherever
 - Repeat: move to the best neighboring state
 - If no neighbors better than current, quit
Heuristic for n-queens problem

- Goal: n queens on board with no conflicts, i.e., no queen attacking another
- States: n queens on board, one per column
- Actions: move a queen in its column
- Heuristic value function: number of conflicts

\[h = 5 \quad h = 2 \quad h = 0 \]
Hill-climbing algorithm

function HILL-CLIMBING(problem) returns a state
 current ← make-node(problem.initial-state)
 loop do
 neighbor ← a highest-valued successor of current
 if neighbor.value ≤ current.value then
 return current.state
 current ← neighbor
 "Like climbing Everest in thick fog with amnesia"
Global and local maxima

- Random restarts
 - find global optimum
 - duh

- Random sideways moves
 - Escape from shoulders
 - Loop forever on flat local maxima
Hill-climbing on the 8-queens problem

- No sideways moves:
 - Succeeds w/ prob. 0.14
 - Average number of moves per trial:
 - 4 when succeeding, 3 when getting stuck
 - Expected total number of moves needed:
 - $3(1-p)/p + 4 \approx 22$ moves

- Allowing 100 sideways moves:
 - Succeeds w/ prob. 0.94
 - Average number of moves per trial:
 - 21 when succeeding, 65 when getting stuck
 - Expected total number of moves needed:
 - $65(1-p)/p + 21 \approx 25$ moves

Moral: algorithms with knobs to twiddle are irritating
Simulated annealing

- Resembles the annealing process used to cool metals slowly to reach an ordered (low-energy) state

- Basic idea:
 - Allow “bad” moves occasionally, depending on “temperature”
 - High temperature => more bad moves allowed, shake the system out of its local minimum
 - Gradually reduce temperature according to some schedule
 - Sounds pretty flaky, doesn’t it?
Simulated annealing algorithm

function SIMULATED-ANNEALING(problem, schedule) returns a state

current ← problem.initial-state

for t = 1 to ∞ do
 T ← schedule(t)
 if T = 0 then return current
 next ← a randomly selected successor of current
 ΔE ← next.value – current.value
 if ΔE > 0 then current ← next
 else current ← next only with probability $e^{ΔE/T}$
Simulated Annealing

Theoretical guarantee:
- Stationary distribution (Boltzmann): \(P(x) \propto e^{E(x)/T} \)
- If \(T \) decreased slowly enough, will converge to optimal state!

Proof sketch
- Consider two adjacent states \(x, y \) with \(E(y) > E(x) \) [high is good]
- Assume \(x \rightarrow y \) and \(y \rightarrow x \) and outdegrees \(D(x) = D(y) = D \)
- Let \(P(x), P(y) \) be the equilibrium occupancy probabilities at \(T \)
- Let \(P(x \rightarrow y) \) be the probability that state \(x \) transitions to state \(y \)
Simulated Annealing

- Is this convergence an interesting guarantee?

- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
 - “Slowly enough” may mean exponentially slowly
 - Random restart hillclimbing also converges to optimal state...

- Simulated annealing and its relatives are a key workhorse in VLSI layout and other optimal configuration problems
Local beam search

- Basic idea:
 - K copies of a local search algorithm, initialized randomly
 - For each iteration
 - Generate ALL successors from K current states
 - Choose best K of these to be the new current states

- Why is this different from K local searches in parallel?
 - The searches *communicate*! “Come over here, the grass is greener!”

- What other well-known algorithm does this remind you of?
 - Evolution!
Genetic algorithms use a natural selection metaphor

- Resample K individuals at each step (selection) weighted by fitness function
- Combine by pairwise crossover operators, plus mutation to give variety
Example: N-Queens

- Does crossover make sense here?
- What would mutation be?
- What would a good fitness function be?
Local search in continuous spaces
Example: Siting airports in Romania

Place 3 airports to minimize the sum of squared distances from each city to its nearest airport

Airport locations
\[x = (x_1, y_1), (x_2, y_2), (x_3, y_3) \]

City locations \((x_c, y_c)\)

\(C_a = \text{cities closest to airport } a\)

Objective: minimize
\[f(x) = \sum_a \sum_{c \in C_a} (x_a - x_c)^2 + (y_a - y_c)^2 \]
Handling a continuous state/action space

1. Discretize it!
 - Define a grid with increment δ, use any of the discrete algorithms

2. Choose random perturbations to the state
 a. First-choice hill-climbing: keep trying until something improves the state
 b. Simulated annealing

3. Compute gradient of $f(x)$ analytically
Finding extrema in continuous space

- Gradient vector \(\nabla f(x) = (\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, ...) \)\(^T\)
- For the airports, \(f(x) = \sum_a \sum_{c \in C_a} (x_a - x_c)^2 + (y_a - y_c)^2 \)
- \(\frac{\partial f}{\partial x_1} = \sum_{c \in C_1} 2(x_1 - x_c) \)
- At an extremum, \(\nabla f(x) = 0 \)
- Can sometimes solve in closed form: \(x_1 = (\sum_{c \in C_1} x_c) / |C_1| \)
- Is this a local or global minimum of \(f \)?
- Gradient descent: \(x \leftarrow x - \alpha \nabla f(x) \)
 - Huge range of algorithms for finding extrema using gradients
Many configuration and optimization problems can be formulated as local search

General families of algorithms:
- Hill-climbing, continuous optimization
- Simulated annealing (and other stochastic methods)
- Local beam search: multiple interaction searches
- Genetic algorithms: break and recombine states

Many machine learning algorithms are local searches