CS 188: Artificial Intelligence

Games: Expectimax and Monte Carlo Tree Search

Instructors: Stuart Russell and Dawn Song
University of California, Berkeley
Outline

- Finite lookahead and evaluation
- Games with chance elements
- Monte Carlo tree search
The story so far...

- Focus on two-player, zero-sum, deterministic, observable, turn-taking games
- Minimax defines rational behavior
- Recursive DFS implementation: space complexity $O(bm)$, time complexity $O(b^m)$
- Alpha-beta pruning with good node ordering reduces time complexity to $O(b^{m/2})$
- Still nowhere close to solving chess, let alone Go or StarCraft
Resource Limits
Problem: In realistic games, cannot search to leaves!

Solution (Shannon, 1950): Bounded lookahead
- Search only to a preset depth limit or horizon
- Use an evaluation function for non-terminal positions

Guarantee of optimal play is gone

Example:
- Suppose we can explore 1M nodes per move
- Chess with alpha-beta, $35^{(8/2)} \approx 1M$; depth 8 is quite good
Evaluation functions are always imperfect

Deeper search => better play (usually)

Or, deeper search gives same quality of play with a less accurate evaluation function

An important example of the tradeoff between complexity of features and complexity of computation

[Demo: depth limited (L6D4, L6D5)]
Pacman with Depth-2 Lookahead
Pacman with Depth-10 Lookahead
Evaluation Functions
Evaluation Functions

- Evaluation functions score non-terminals in depth-limited search

- Typically weighted linear sum of features:
 - \(\text{EVAL}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \)
 - E.g., \(w_1 = 9, f_1(s) = (\text{num white queens} - \text{num black queens}) \), etc.

- Or a more complex nonlinear function (e.g., NN) trained by self-play RL

- Terminate search only in quiescent positions, i.e., no major changes expected in feature values
Evaluation for Pacman
Games with uncertain outcomes
Chance outcomes in trees

Tictactoe, chess

Minimax

Tetris, investing

Expectimax

Backgammon, Monopoly

Expectiminimax
Minimax

function decision(s) returns an action
 return the action a in Actions(s) with the highest minimax_value(Result(s,a))

function minimax_value(s) returns a value
 if Terminal-Test(s) then return Utility(s)
 if Player(s) = MAX then return \(\max_a \text{ in } \text{Actions}(s) \text{ minimax_value(Result(s,a))} \)
 if Player(s) = MIN then return \(\min_a \text{ in } \text{Actions}(s) \text{ minimax_value(Result(s,a))} \)
Expectiminimax

function decision(s) returns an action
 return the action a in Actions(s) with the highest value(Result(s,a))

function value(s) returns a value
 if Terminal-Test(s) then return Utility(s)
 if Player(s) = MAX then return \max_a in Actions(s) value(Result(s,a))
 if Player(s) = MIN then return \min_a in Actions(s) value(Result(s,a))
 if Player(s) = CHANCE then return \sum_a in Actions(s) Pr(a) * value(Result(s,a))
Example: Backgammon

- Dice rolls increase b: 21 possible rolls with 2 dice
 - Backgammon ≈ 20 legal moves
 - 4 plies = $20 \times (21 \times 20)^3 = 1.2 \times 10^9$

- As depth increases, probability of reaching a given search node shrinks
 - Usefulness of search is diminished
 - Pruning is trickier...

- Historic AI: TDGammon (1997) uses depth-2 search + very good evaluation function + reinforcement learning: world-champion level play
What Values to Use?

- For worst-case minimax reasoning, evaluation function scale doesn’t matter.
 - We just want better states to have higher evaluations (get the ordering right).
 - Minimax decisions are invariant with respect to monotonic transformations on values.

- Expectiminimax decisions are invariant with respect to positive affine transformations on values.

- Expectiminimax evaluation functions have to be aligned with actual win probabilities!
Monte Carlo Tree Search

- Methods based on alpha-beta search assume a fixed horizon
 - Pretty hopeless for Go, with $b > 300$
- MCTS combines two important ideas:
 - **Evaluation by rollouts** – play multiple games to termination from a state s (using a simple, fast rollout policy) and count wins and losses
 - **Selective search** – explore parts of the tree that will help improve the decision at the root, regardless of depth
Rollouts

- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result
- Fraction of wins correlates with the true value of the position!
- Having a “better” rollout policy helps
MCTS Version 0

- Do N rollouts from each child of the root, record fraction of wins
- Pick the move that gives the best outcome by this metric
- Do N rollouts from each child of the root, record fraction of wins
- Pick the move that gives the best outcome by this metric

```
  57/100
  /   \
/     \ 
59/100 0/100
```
Allocate rollouts to more promising nodes
Allocate rollouts to more promising nodes
- Allocate rollouts to more promising nodes
- Allocate rollouts to more uncertain nodes
UCB heuristics

- UCB1 formula combines “promising” and “uncertain”:

 \[
 UCB1(n) = \frac{U(n)}{N(n)} + C \times \sqrt{\frac{\log N(\text{PARENT}(n))}{N(n)}}
 \]

- \(N(n) \) = number of rollouts from node \(n \)
- \(U(n) \) = total utility of rollouts (e.g., # wins) for Player(\text{Parent}(n))
- A provably not terrible heuristic for \textit{bandit problems}
 - (which are not the same as the problem we face here!)
MCTS Version 2.0: UCT

- Repeat until out of time:
 - Given the current search tree, recursively apply UCB to choose a path down to a leaf (not fully expanded) node \(n \)
 - Add a new child \(c \) to \(n \) and run a rollout from \(c \)
 - Update the win counts from \(c \) back up to the root
- Choose the action leading to the child with highest \(N \)
Why is there no min or max?????

- “Value” of a node, $U(n)/N(n)$, is a weighted **sum** of child values!
- Idea: as $N \to \infty$, the vast majority of rollouts are concentrated in the best child(ren), so weighted average \to max/min
- Theorem: as $N \to \infty$ UCT selects the minimax move
 - (but N never approaches infinity!)
Summary

- Games require decisions when optimality is impossible
 - Bounded-depth search and approximate evaluation functions
- Games force efficient use of computation
 - Alpha-beta pruning, MCTS
- Game playing has produced important research ideas
 - Reinforcement learning (checkers)
 - Iterative deepening (chess)
 - Rational metareasoning (Othello)
 - Monte Carlo tree search (chess, Go)
 - Solution methods for partial-information games in economics (poker)
- Video games present much greater challenges – lots to do!
 - $b = 10^{500}$, $|S| = 10^{4000}$, $m = 10,000$, partially observable, often > 2 players