CS 188: Artificial Intelligence

Propositional Logic I

Instructors: Stuart Russell and Dawn Song

University of California, Berkeley
Outline

1. Propositional Logic I
 - Basic concepts of knowledge, logic, reasoning
 - Propositional logic: syntax and semantics, Pacworld example
 - Inference by theorem proving

2. Propositional logic II
 - Inference by model checking
 - A Pac agent using propositional logic

3. First-order logic
Agents that know things

- Agents acquire knowledge through perception, learning, language
 - Knowledge of the effects of actions (“transition model”)
 - Knowledge of how the world affects sensors (“sensor model”)
 - Knowledge of the current state of the world
- Can keep track of a partially observable world
- Can formulate plans to achieve goals
- Can design and build gravitational wave detectors.....
Knowledge base = set of sentences in a formal language

Declarative approach to building an agent (or other system):
- *Tell* it what it needs to know (or have it *Learn* the knowledge)
- Then it can *Ask* itself what to do—answers should follow from the KB

Agents can be viewed at the *knowledge level* i.e., what they *know*, regardless of how implemented

A single inference algorithm can answer any answerable question
Logic

- **Syntax**: What sentences are allowed?
- **Semantics**:
 - What are the *possible worlds*?
 - Which sentences are *true* in which worlds? (i.e., definition of truth)
Different kinds of logic

- Propositional logic
 - Syntax: $P \lor (\neg Q \land R)$; $X_1 \leftrightarrow (\text{Raining} \Rightarrow \neg \text{Sunny})$
 - Possible world: \{P=true, Q=true, R=false, S=true\} or 1101
 - Semantics: $\alpha \land \beta$ is true in a world iff α is true and β is true (etc.)

- First-order logic
 - Syntax: $\forall x \exists y P(x,y) \land \neg Q(\text{Joe},f(x)) \Rightarrow f(x)=f(y)$
 - Possible world: Objects o_1, o_2, o_3; P holds for $<o_1,o_2>$; Q holds for $<o_3>$; $f(o_1)=o_1$; $\text{Joe}=o_3$; etc.
 - Semantics: $\phi(\sigma)$ is true in a world if $\sigma=\sigma_j$ and ϕ holds for σ_j; etc.
Different kinds of logic, contd.

- **Relational databases:**
 - Syntax: ground relational sentences, e.g., \textit{Sibling}(Ali,Bo)
 - Possible worlds: (typed) objects and (typed) relations
 - Semantics: sentences in the DB are true, everything else is false
 - Cannot express disjunction, implication, universals, etc.
 - Query language (SQL etc.) typically some variant of first-order logic
 - Often augmented by first-order rule languages, e.g., Datalog
 - Knowledge graphs (roughly: relational DB + ontology of types and relations)
 - Google Knowledge Graph: 5 billion entities, 500 billion facts, >30% of queries
 - Facebook network: 2.8 billion people, trillions of posts, maybe quadrillions of facts
Inference: entailment

- **Entailment**: $\alpha \models \beta$ (“α entails β” or “β follows from α”) iff in every world where α is true, β is also true
 - I.e., the α-worlds are a subset of the β-worlds [$\text{models}(\alpha) \subseteq \text{models}(\beta)$]

- In the example, $\alpha_2 \models \alpha_1$

- (Say α_2 is $\neg Q \land R \land S \land W$
 α_1 is $\neg Q$)
A proof is a *demonstration* of entailment between α and β

Sound algorithm: everything it claims to prove is in fact entailed

Complete algorithm: every that is entailed can be proved
Inference: proofs

- **Method 1: model-checking**
 - For every possible world, if α is true make sure that is β true too
 - OK for propositional logic (finitely many worlds); not easy for first-order logic

- **Method 2: theorem-proving**
 - Search for a sequence of proof steps (applications of inference rules) leading from α to β
 - E.g., from $P \land (P \Rightarrow Q)$, infer Q by **Modus Ponens**
Propositional logic syntax

- Given: a set of proposition symbols \(\{X_1, X_2, \ldots, X_n\} \)
 - (we often add True and False for convenience)
- \(X_i \) is a sentence
- If \(\alpha \) is a sentence then \(\neg \alpha \) is a sentence
- If \(\alpha \) and \(\beta \) are sentences then \(\alpha \land \beta \) is a sentence
- If \(\alpha \) and \(\beta \) are sentences then \(\alpha \lor \beta \) is a sentence
- If \(\alpha \) and \(\beta \) are sentences then \(\alpha \Rightarrow \beta \) is a sentence
- If \(\alpha \) and \(\beta \) are sentences then \(\alpha \Leftrightarrow \beta \) is a sentence
- And p.s. there are no other sentences!
Propositional logic semantics

- Let m be a model assigning true or false to $\{X_1, X_2, \ldots, X_n\}$
- If α is a symbol then its truth value is given in m
- $\neg \alpha$ is true in m iff α is false in m
- $\alpha \land \beta$ is true in m iff α is true in m and β is true in m
- $\alpha \lor \beta$ is true in m iff α is true in m or β is true in m
- $\alpha \Rightarrow \beta$ is true in m iff α is false in m or β is true in m
- $\alpha \Leftrightarrow \beta$ is true in m iff $\alpha \Rightarrow \beta$ is true in m and $\beta \Rightarrow \alpha$ is true in m
Propositional logic semantics in code

function PL-TRUE?(α, model) returns true or false
 if α is a symbol then return Lookup(α, model)
 if Op(α) = ¬ then return not(PL-TRUE?(Arg1(α), model))
 if Op(α) = ∧ then return and(PL-TRUE?(Arg1(α), model),
 PL-TRUE?(Arg2(α), model))
 etc.

(Sometimes called “recursion over syntax”)
Example: Partially observable Pacman

- Pacman knows the map but perceives just wall/gap to NSEW
- Formulation: *what variables do we need?*
 - Wall locations
 - Wall_0,0 there is a wall at [0,0]
 - Wall_0,1 there is a wall at [0,1], etc. (*N* symbols for *N* locations)
 - Percepts
 - Blocked_W (blocked by wall to my West) etc.
 - Blocked_W_0 (blocked by wall to my West *at time 0*) etc. (*4T* symbols for *T* time steps)
 - Actions
 - W_0 (Pacman moves West at time 0), E_0 etc. (*4T* symbols)
 - Pacman’s location
 - At_0,0_0 (Pacman is at [0,0] at time 0), At_0,1_0 etc. (*NT* symbols)
How many possible worlds?

- N locations, T time steps $\Rightarrow N + 4T + 4T + NT = O(NT)$ variables
- $O(2^{NT})$ possible worlds!
- $N=200$, $T=400$ $\Rightarrow \sim 10^{24000}$ worlds

Each world is a complete “history”
- But most of them are pretty weird!
Pacman’s knowledge base: Map

- Pacman knows where the walls are:
 - $\text{Wall}_0,0 \land \text{Wall}_0,1 \land \text{Wall}_0,2 \land \text{Wall}_0,3 \land \text{Wall}_0,4 \land \text{Wall}_1,4 \land \ldots$
- Pacman knows where the walls aren’t!
 - $\neg\text{Wall}_1,1 \land \neg\text{Wall}_1,2 \land \neg\text{Wall}_1,3 \land \neg\text{Wall}_2,1 \land \neg\text{Wall}_2,2 \land \ldots$
Pacman’s knowledge base: Initial state

- Pacman doesn’t know where he is
- But he knows he’s somewhere!
 - $At_{1,1,0} \lor At_{1,2,0} \lor At_{1,3,0} \lor At_{2,1,0} \lor \ldots$
Pacman’s knowledge base: Sensor model

- State facts about how Pacman’s percepts arise...
 - \(<\text{Percept variable at } t> \iff <\text{some condition on world at } t>\)
 - Pacman perceives a wall to the West at time \(t\) if and only if he is in \(x,y\) and there is a wall at \(x-1,y\)
 - \(\text{Blocked}_W_0 \iff ((\text{At}_1,1_0 \land \text{Wall}_0,1) \lor \text{At}_1,2_0 \land \text{Wall}_0,2) \lor ((\text{At}_1,3_0 \land \text{Wall}_0,3) \lor \ldots)\)
 - 4T sentences, each of size \(O(N)\)
 - Note: these are valid for any map
Pacman’s knowledge base: Transition model

- How does each state variable at each time get its value?
 - Here we care about location variables, e.g., At_3,3_17

- A state variable X gets its value according to a successor-state axiom
 - $X_t \iff [X_{t-1} \land \neg (\text{some action}_{t-1} \text{ made it false})] \lor \neg X_{t-1} \land (\text{some action}_{t-1} \text{ made it true})$

- For Pacman location:
 - $At_{3,3}_{17} \iff [At_{3,3}_{16} \land \neg((\neg Wall_{3,4} \land N_{16}) \lor (\neg Wall_{4,3} \land E_{16}) \lor \ldots)] \lor \neg At_{3,3}_{16} \land ((At_{3,2}_{16} \land \neg Wall_{3,3} \land N_{16}) \lor (At_{2,3}_{16} \land \neg Wall_{3,3} \land N_{16}) \lor \ldots)]$
How many sentences?

- Vast majority of KB occupied by $O(NT)$ transition model sentences
 - Each about 10 lines of text
 - $N=200$, $T=400$ => ~800,000 lines of text, or 20,000 pages
- This is because propositional logic has limited expressive power
- Are we really going to write 20,000 pages of logic sentences???
- No, but your code will generate all those sentences!
- In first-order logic, we need $O(1)$ transition model sentences
 - (State-space search uses atomic states: how do we keep the transition model representation small???)
Some reasoning tasks

- **Localization** with a map and local sensing:
 - Given an initial KB, plus a sequence of percepts and actions, where am I?

- **Mapping** with a location sensor:
 - Given an initial KB, plus a sequence of percepts and actions, what is the map?

- **Simultaneous localization and mapping**:
 - Given ..., where am I and what is the map?

- **Planning**:
 - Given ..., what action sequence is guaranteed to reach the goal?

ALL OF THESE USE THE SAME KB AND THE SAME ALGORITHM!!
Summary

- One possible agent architecture: knowledge + inference
- Logics provide a formal way to encode knowledge
 - A logic is defined by: syntax, set of possible worlds, truth condition
- A simple KB for Pacman covers the initial state, sensor model, and transition model
- Logical inference computes entailment relations among sentences, enabling a wide range of tasks to be solved