CS 188 Introduction to Artificial Intelligence

Exam Prep 2

Q1. Searching with Heuristics

Consider the A* searching process on the connected undirected graph, with starting node S and the goal node G. Suppose the

	st for each connection edge is always positive . We define $h^*(X)$ as the sho							
nsw	nswer Questions (a), (b) and (c). You may want to solve Questions (a) and ((b) at the same time.						
(a)	 (a) Suppose h is an admissible heuristic, and we conduct A* tree search C be the cost of the found path (directed by h', defined in part (a)) from 							
	(i) Choose one best answer for each condition below.							
	1. If $h'(X) = \frac{1}{2}h(X)$ for all Node X, then	$\bigcirc C = h^*(S) \bigcirc C > h^*(S) \bigcirc C \ge h^*(S)$						
	2. If $h'(X) = \frac{h(X) + h^*(X)}{2}$ for all Node X, then	$\bigcirc C = h^*(S) \bigcirc C > h^*(S) \bigcirc C \ge h^*(S)$						
	<u>-</u>	$\bigcirc C = h^*(S) \bigcirc C > h^*(S) \bigcirc C \ge h^*(S)$						
	4. If we define the set $K(X)$ for a node X as all its neighbor nodes Y satisfying $h^*(X) > h^*(Y)$, and the following always holds							
	$h'(X) \le \begin{cases} \min_{Y \in K(X)} h'(Y) - h(Y) \\ h(X) \end{cases}$	$(x) + h(X)$ if $K(X) \neq \emptyset$ if $K(X) = \emptyset$						
		$\bigcirc C = h^*(S) \bigcirc C > h^*(S) \bigcirc C \ge h^*(S)$						
	5. If <i>K</i> is the same as above, we have							
	$h'(X) = \begin{cases} \min_{Y \in K(X)} h(Y) + \cos x \\ h(X) \end{cases}$	$t(X,Y)$ if $K(X) \neq \emptyset$ if $K(X) = \emptyset$						
	where $cost(X, Y)$ is the cost of the edge connecting X and Y							
		$\bigcirc C = h^*(S) \bigcirc C > h^*(S) \bigcirc C \ge h^*(S)$						
	6. If $h'(X) = \min_{Y \in K(X) + \{X\}} h(Y)$ (K is the same as above),							
	(ii) In which of the conditions above, h' is still admissible and for sur we say h_1 dominates h_2 when $h_1(X) \ge h_2(X)$ holds for all X .	e to dominate h ? Check all that apply. Remember $1 2 3 4 5 6$						
(b)	(b) Suppose h is a consistent heuristic, and we conduct A^* graph search	•						
	(i) Answer exactly the same questions for each conditions in Question $C = h^*(S) \cap C = h^*(S) $							
	1. $\bigcirc C = h^*(S) \bigcirc C > h^*(S) \bigcirc C \ge h^*(S)$ 2. 3. $\bigcirc C = h^*(S) \bigcirc C > h^*(S) \bigcirc C \ge h^*(S)$ 4.	$\bigcirc C = h^*(S) \bigcirc C > h^*(S) \bigcirc C \ge h^*(S)$						
	5. $\bigcirc C = h^*(S) \bigcirc C > h^*(S) \bigcirc C \ge h^*(S)$ 6.	$\bigcirc C = h^*(S) \bigcirc C > h^*(S) \bigcirc C \ge h^*(S)$						
	(ii) In which of the conditions above, h' is still consistent and for sur							
	(=) ==en si inc constituent accord, iv is sum consistent and for sur							

(c) Suppose h is an **admissible** heuristic, and we conduct A^* **tree search** using heuristic h' and finally find a solution.

If $\epsilon > 0$, and X_0 is a node in the graph, and h' is a heuristic such that

$$h'(X) = \begin{cases} h(X) & \text{if } X = X_0 \\ h(X) + \epsilon & \text{otherwise} \end{cases}$$

- Alice claims h' can be inadmissible, and hence $C = h^*(S)$ does not always hold.
- Bob instead thinks the node expansion order directed by h' is the same as the heuristic h'', where

$$h''(X) = \begin{cases} h(X) - \epsilon & \text{if } X = X_0 \\ h(X) & \text{if otherwise} \end{cases}$$

Since h'' is admissible and will lead to $C = h^*(S)$, and so does h'. Hence, $C = h^*(S)$ always holds.

The two conclusions (<u>underlined</u>) apparently contradict with each other, and **only exactly one of them are correct and the other is wrong**. Choose the **best** explanation from below - which student's conclusion is wrong, and why are they wrong?

\bigcirc	Alice's conclusion is wrong, because the heuristic h' is always admissible.
_	Alice's conclusion is wrong, because an inadmissible heuristics does not necessarily always lead to the failure of the nality when conducting A* tree search.
\bigcirc	Alice's conclusion is wrong, because of another reason that is not listed above.
	Bob's conclusion is wrong, because the node visiting expansion ordering of h'' during searching might not be the as h' .
	Bob's conclusion is wrong, because the heuristic h'' might lead to an incomplete search, regardless of its optimally erty.
\bigcirc	Bob's conclusion is wrong, because of another reason that is not listed above.

Q2. Iterative Deepening Search

Pacman is performing search in a maze again! The search graph has a branching factor of b, a solution of depth d, a maximum depth of m, and edge costs that may not be integers. Although he knows breadth first search returns the solution with the smallest depth, it takes up too much space, so he decides to try using iterative deepening. As a reminder, in standard depth-first iterative deepening we start by performing a depth first search terminated at a maximum depth of one. If no solution is found, we start over and perform a depth first search to depth two and so on. This way we obtain the shallowest solution, but use only O(bd) space.

But Pacman decides to use a variant of iterative deepening called **iterative deepening A***, where instead of limiting the depth-first search by depth as in standard iterative deepening search, we can limit the depth-first search by the f value as defined in A* search. As a reminder f[node] = g[node] + h[node] where g[node] is the cost of the path from the start state and h[node] is a heuristic value estimating the cost to the closest goal state.

In this question, all searches are tree searches and **not** graph searches.

(a) Complete the pseudocode outlining how to perform iterative deepening A* by choosing the option from the next page that fills in each of these blanks. Iterative deepening A* should return the solution with the lowest cost when given a consistent heuristic. Note that cutoff is a boolean and new-limit is a number.

Tunction Tiera	γive-Deepening-T	REE-SEARCH(<i>prob</i>	blem)						
$start$ -node \leftarrow	- Make-Node(Ini	ΓΙΑL-STATE[<i>probl</i>	<i>em</i>])						
$limit \leftarrow f[start-node]$									
loop									
$fringe \leftarrow$	$fringe \leftarrow MAKE-STACK(start-node)$								
new-limi	<i>t</i> ←	(i)							
$cutoff \leftarrow$	(ii)								
while fri	nge is not empty do	•							
node	\leftarrow Remove-Fron	T(fringe)							
if Go	OAL-TEST(problem,	STATE[node]) the	n						
r	eturn node								
end i	if								
for child-node in EXPAND(STATE[node], problem) do									
if	$f[child-node] \le line$								
	$fringe \leftarrow Insert$	(child-node, fringe	?)						
	new-limit ←	(iii)							
	cutoff ←	(iv)							
e	cutoff ←	(iv)							
e		(iv)							
e	lse	· · · · · · · · · · · · · · · · · · ·							
	lse new-limit ←	(v)							
	$\begin{array}{c} \textbf{lse} \\ new\text{-}limit \leftarrow \boxed{} \\ cutoff \leftarrow \boxed{} \\ \textbf{nd if} \end{array}$	(v)							
e	lse new-limit ← cutoff ← nd if for	(v)							
e end f	lse new-limit ← cutoff ← nd if for le	(v)							
e end f end whil if not cu	lse new-limit ← cutoff ← nd if for le	(v)							
e end f end whil if not cu	lse new-limit ← cutoff ← nd if for le toff then	(v)							
e end f end whi if not cu retur	lse new-limit ← cutoff ← nd if for le toff then	(v)							

A_1	$-\infty$	$\mathbf{A_2}$	0		A_3	∞] A ₄	limit
$\mathbf{B_1}$	True	$\mathbf{B_2}$	False		B ₃	cutoff	B_4	not cutoff
C_1	new-limit	C_2	new-li	imit + 1] C ₃	new-limit + f[node]	$\begin{bmatrix} \mathbf{C_4} \end{bmatrix}$	new-limit + f[child-node]
C_5	MIN(new-limit, f[node])	C_6 MIN(new-limit, $f[child-node]$)		$\mathbf{C_7}$	MAX(new-limit, f[node])	C ₈	MAX(new-limit, f[child-node])	
(i)	$\bigcirc A_1$	\subset	$\mathbf{A_2}$	$\bigcirc A_3$	$\bigcirc \mathbf{A}$	4		
(ii)	\bigcirc B ₁	С	B ₂	$\bigcirc B_3$	$\bigcirc B$	4		
(iii)	$\bigcirc \operatorname{C}_1 \\ \bigcirc \operatorname{C}_5$	_	C ₂ C ₆	$\bigcirc C_3 \\ \bigcirc C_7$	$\bigcirc \mathbf{C}$	-		
(iv)	\bigcirc B ₁	C	B ₂	$\bigcirc B_3$	\bigcirc B.	4		
(v)			C ₂ C ₆	$\bigcirc C_3 \\ \bigcirc C_7$	\bigcirc C	•		
(vi)	\bigcirc B ₁	C) B ₂	$\bigcirc B_3$	\bigcirc B.	4		
(vii)			C ₂	$\bigcirc C_3 \\ \bigcirc C_7$	$\bigcirc \mathbf{C}$			

- **(b)** Assuming there are no ties in *f* value between nodes, which of the following statements about the number of nodes that iterative deepening A* expands is True? If the same node is expanded multiple times, count all of the times that it is expanded. If none of the options are correct, mark None of the above.
 - \bigcirc The number of times that iterative deepening A* expands a node is greater than or equal to the number of times A* will expand a node.
 - \bigcirc The number of times that iterative deepening A* expands a node is less than or equal to the number of times A* will expand a node.
 - \bigcirc We don't know if the number of times iterative deepening A* expands a node is more or less than the number of times A* will expand a node.
 - O None of the above