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Q1. Policy Evaluation
In this question, you will be working in an MDP with states 𝑆, actions 𝐴, discount factor 𝛾 , transition function 𝑇 , and reward
function 𝑅.

We have some fixed policy 𝜋 ∶ 𝑆 → 𝐴, which returns an action 𝑎 = 𝜋(𝑠) for each state 𝑠 ∈ 𝑆. We want to learn the 𝑄 function
𝑄𝜋(𝑠, 𝑎) for this policy: the expected discounted reward from taking action 𝑎 in state 𝑠 and then continuing to act according
to 𝜋: 𝑄𝜋(𝑠, 𝑎) =

∑

𝑠′ 𝑇 (𝑠, 𝑎, 𝑠′)[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑄𝜋(𝑠′, 𝜋(𝑠′)]. The policy 𝜋 will not change while running any of the algorithms
below.

(a) Can we guarantee anything about how the values 𝑄𝜋 compare to the values 𝑄∗ for an optimal policy 𝜋∗?

# 𝑄𝜋(𝑠, 𝑎) ≤ 𝑄∗(𝑠, 𝑎) for all 𝑠, 𝑎
# 𝑄𝜋(𝑠, 𝑎) = 𝑄∗(𝑠, 𝑎) for all 𝑠, 𝑎
# 𝑄𝜋(𝑠, 𝑎) ≥ 𝑄∗(𝑠, 𝑎) for all 𝑠, 𝑎
# None of the above are guaranteed

(b) Suppose 𝑇 and 𝑅 are unknown. You will develop sample-based methods to estimate 𝑄𝜋 . You obtain a series of samples
(𝑠1, 𝑎1, 𝑟1), (𝑠2, 𝑎2, 𝑟2),…(𝑠𝑇 , 𝑎𝑇 , 𝑟𝑇 ) from acting according to this policy (where 𝑎𝑡 = 𝜋(𝑠𝑡), for all 𝑡).

(i) Recall the update equation for the Temporal Difference algorithm, performed on each sample in sequence:

𝑉 (𝑠𝑡) ← (1 − 𝛼)𝑉 (𝑠𝑡) + 𝛼(𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1))

which approximates the expected discounted reward 𝑉 𝜋(𝑠) for following policy 𝜋 from each state 𝑠, for a learning
rate 𝛼.
Fill in the blank below to create a similar update equation which will approximate 𝑄𝜋 using the samples.
You can use any of the terms 𝑄, 𝑠𝑡, 𝑠𝑡+1, 𝑎𝑡, 𝑎𝑡+1, 𝑟𝑡, 𝑟𝑡+1, 𝛾, 𝛼, 𝜋 in your equation, as well as

∑

and max with any
index variables (i.e. you could write max𝑎, or

∑

𝑎 and then use 𝑎 somewhere else), but no other terms.

𝑄(𝑠𝑡, 𝑎𝑡) ← (1 − 𝛼)𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼
[ ]

(ii) Now, we will approximate 𝑄𝜋 using a linear function: 𝑄(𝑠, 𝑎) = 𝐰⊤𝐟 (𝑠, 𝑎) for a weight vector 𝐰 and feature function
𝐟 (𝑠, 𝑎).
To decouple this part from the previous part, use 𝑄𝑠𝑎𝑚𝑝 for the value in the blank in part (i) (i.e. 𝑄(𝑠𝑡, 𝑎𝑡) ←
(1 − 𝛼)𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼𝑄𝑠𝑎𝑚𝑝).
Which of the following is the correct sample-based update for 𝐰?

# 𝐰 ← 𝐰 + 𝛼[𝑄(𝑠𝑡, 𝑎𝑡) −𝑄𝑠𝑎𝑚𝑝]
# 𝐰 ← 𝐰 − 𝛼[𝑄(𝑠𝑡, 𝑎𝑡) −𝑄𝑠𝑎𝑚𝑝]
# 𝐰 ← 𝐰 + 𝛼[𝑄(𝑠𝑡, 𝑎𝑡) −𝑄𝑠𝑎𝑚𝑝]𝐟 (𝑠𝑡, 𝑎𝑡)
# 𝐰 ← 𝐰 − 𝛼[𝑄(𝑠𝑡, 𝑎𝑡) −𝑄𝑠𝑎𝑚𝑝]𝐟 (𝑠𝑡, 𝑎𝑡)
# 𝐰 ← 𝐰 + 𝛼[𝑄(𝑠𝑡, 𝑎𝑡) −𝑄𝑠𝑎𝑚𝑝]𝐰
# 𝐰 ← 𝐰 − 𝛼[𝑄(𝑠𝑡, 𝑎𝑡) −𝑄𝑠𝑎𝑚𝑝]𝐰

(iii) The algorithms in the previous parts (part i and ii) are:
□ model-based □ model-free
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Q2. RL: Dangerous Water Slide
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Suppose now that several years have passed and the water park has not received adequate maintenance. It has become a dangerous
water park! Now, each time you choose to move to (or remain at) one of the ladder or slide states (states B-F) there is a chance
that, instead of ending up where you intended, you fall off the slide and hurt yourself. The cost of falling is -99 and results in
you getting removed from the water park via ambulance. The new MDP is depicted above.

Unfortunately, you don’t know how likely you are to fall if you choose to use the slide, and therefore you’re not sure whether the
fun of the ride outweighs the potential harm. You use reinforcement learning to figure it out!

For the rest of this problem assume 𝛾 = 1.0 (i.e. no future reward discounting). You will use the following two trajectories
through the state space to perform your updates. Each trajectory is a sequence of samples, each with the following form:
(𝑠, 𝑎, 𝑠′, 𝑟).

Trajectory 1: (A, East, B, -1), (B, East, C, -1), (C, East, D, +32)
Trajectory 2: (A, East, B, -1), (B, East, Fall, -99)

(a) What are the values of states A, B, and C after performing temporal difference learning with a learning rate of 𝛼 = 0.5
using only Trajectory 1?

𝑉 (𝐴) = 𝑉 (𝐵) = 𝑉 (𝐶) =

(b) What are the values of states A, B, and C after performing temporal difference learning with a learning rate of 𝛼 = 0.5
using both Trajectory 1 and Trajectory 2?

𝑉 (𝐴) = 𝑉 (𝐵) = 𝑉 (𝐶) =

(c) What are the values of states/action pairs (A, South), (A, East), and (B, East) after performing Q-learning with a learning
rate of 𝛼 = 0.5 using both Trajectory 1 and Trajectory 2?

𝑄(𝐴,South) = 𝑄(𝐴,East) = 𝑄(𝐵,East) =
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