
CS 188
Spring 2023 Regular Discussion 8

1 Pacman with Feature-Based Q-Learning
We would like to use a Q-learning agent for Pacman, but the size of the state space for a large grid is too
massive to hold in memory. To solve this, we will switch to feature-based representation of Pacman’s state.

(a) We will have two features, Fg and Fp, defined as follows:

Fg(s, a) = A(s) +B(s, a) + C(s, a)

Fp(s, a) = D(s) + 2E(s, a)

where

A(s) = number of ghosts within 1 step of state s

B(s, a) = number of ghosts Pacman touches after taking action a from state s

C(s, a) = number of ghosts within 1 step of the state Pacman ends up in after taking action a

D(s) = number of food pellets within 1 step of state s

E(s, a) = number of food pellets eaten after taking action a from state s

For this pacman board, the ghosts will always be stationary, and the action space is {left, right, up, down, stay}.

calculate the features for the actions ∈ {left, right, up, stay}

(b) After a few episodes of Q-learning, the weights are wg = −10 and wp = 100. Calculate the Q value for
each action ∈ {left, right, up, stay} from the current state shown in the figure.

(c) We observe a transition that starts from the state above, s, takes action up, ends in state s′ (the state
with the food pellet above) and receives a reward R(s, a, s′) = 250. The available actions from state s′ are
down and stay. Assuming a discount of γ = 0.5, calculate the new estimate of the Q value for s based on
this episode.

(d) With this new estimate and a learning rate (α) of 0.5, update the weights for each feature.

1



2 Q-learning
Consider the following gridworld (rewards shown on left, state names shown on right).

Rewards State names

From state A, the possible actions are right(→) and down(↓). From state B, the possible actions are left(←)
and down(↓). For a numbered state (G1, G2), the only action is to exit. Upon exiting from a numbered square
we collect the reward specified by the number on the square and enter the end-of-game absorbing state X. We
also know that the discount factor γ = 1, and in this MDP all actions are deterministic and always succeed.

Consider the following episodes:

Episode 1 (E1)
s a s′ r
A ↓ G1 0
G1 exit X 10

Episode 2 (E2)
s a s′ r
B ↓ G2 0
G2 exit X 1

Episode 3 (E3)
s a s′ r
A → B 0
B ↓ G2 0
G2 exit X 1

Episode 4 (E4)
s a s′ r
B ← A 0
A ↓ G1 0
G1 exit X 10

(a) Consider using temporal-difference learning to learn V (s). When running TD-learning, all values are ini-
tialized to zero.
For which sequences of episodes, if repeated infinitely often, does V (s) converge to V ∗(s) for all states s?

(Assume appropriate learning rates such that all values converge.)
Write the correct sequence under “Other” if no correct sequences of episodes are listed.

□ E1, E2, E3, E4 □ E1, E2, E1, E2 □ E1, E2, E3, E1 □ E4, E4, E4, E4
□ E4, E3, E2, E1 □ E3, E4, E3, E4 □ E1, E2, E4, E1

□ Other

2



(b) Consider using Q-learning to learn Q(s, a). When running Q-learning, all values are initialized to zero.
For which sequences of episodes, if repeated infinitely often, does Q(s, a) converge to Q∗(s, a) for all state-
action pairs (s, a)

(Assume appropriate learning rates such that all Q-values converge.)
Write the correct sequence under “Other” if no correct sequences of episodes are listed.

□ E1, E2, E3, E4 □ E1, E2, E1, E2 □ E1, E2, E3, E1 □ E4, E4, E4, E4
□ E4, E3, E2, E1 □ E3, E4, E3, E4 □ E1, E2, E4, E1

□ Other

3


