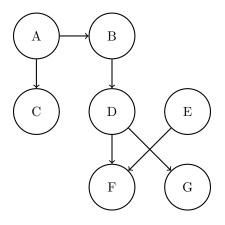
CS 188 Spring 2023 Regular Discussion 9 Solutions

1 Bayes' Nets: Representation and Independence

Parts (a) and (b) pertain to the following Bayes' Net.



(a) Express the joint probability distribution as a product of terms representing individual conditional probabilities tables associated with the Bayes Net.

P(A)P(C|A)P(B|A)P(D|B)P(E)P(F|D,E)P(G|D)

- (b) Assume each node can take on 4 values. How many entries do the factors at A, D, and F have?
 - A: <u>4</u> D: <u>4²</u> F: <u>4³</u>

Consider the following probability distribution tables. The joint distribution P(A, B, C, D) is equal to the product of these probability distribution tables.

		Α	В	P(B A)	В	С	P(C B)	С	D	P(D C)
A	P(A)	+a	+b	0.9	+b	+c	0.8	+c	+d	0.25
+a	0.8	+a	-b	0.1	+b	-c	0.2	+c	-d	0.75
-a	0.2	-a	+b	0.6	-b	+c	0.8	-c	+d	0.5
		-a	-b	0.4	-b	-c	0.2	-c	-d	0.5

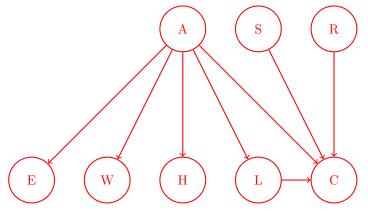
(c) State all non-conditional independence assumptions that are implied by the probability distribution tables. From the tables, we have $A \not \perp B$ and $C \not \perp D$. Then, we have every remaining pair of variables: $A \perp C, A \perp D, B \perp C, B \perp D$

You are building advanced safety features for cars that can warn a driver if they are falling asleep (A) and also calculate the probability of a crash (C) in real time. You have at your disposal 6 sensors (random variables):

- E: whether the driver's eyes are open or closed
- W: whether the steering wheel is being touched or not
- L: whether the car is in the lane or not
- S: whether the car is speeding or not
- *H*: whether the driver's heart rate is somewhat elevated or resting
- R: whether the car radar detects a close object or not

A influences $\{E, W, H, L, C\}$. C is influenced by $\{A, S, L, R\}$.

(d) Draw the Bayes Net associated with the description above by adding edges between the provided nodes where appropriate.



2 HMMs

Consider the following Hidden Markov Model. O_1 and O_2 are supposed to be shaded.

(w.)	$\rightarrow (W_{a})$			W_t	W_{t+1}	$P(W_{t+1} W_t)$	W_t	O_t	$P(O_t W_t)$
		W_1	$P(W_1)$	0	0	0.4	0	a	0.9
		0	0.3	0	1	0.6	0	b	0.1
		1	0.7	1	0	0.8	1	a	0.5
	02			1	1	0.2	1	b	0.5

Suppose that we observe $O_1 = a$ and $O_2 = b$.

Using the forward algorithm, compute the probability distribution $P(W_2|O_1 = a, O_2 = b)$ one step at a time.

(a) Compute $P(W_1, O_1 = a)$.

 $P(W_1, O_1 = a) = P(W_1)P(O_1 = a|W_1)$ $P(W_1 = 0, O_1 = a) = (0.3)(0.9) = 0.27$ $P(W_1 = 1, O_1 = a) = (0.7)(0.5) = 0.35$

(b) Using the previous calculation, compute $P(W_2, O_1 = a)$.

$$\begin{split} P(W_2, O_1 = a) &= \sum_{w_1} P(w_1, O_1 = a) P(W_2 | w_1) \\ P(W_2 = 0, O_1 = a) &= (0.27)(0.4) + (0.35)(0.8) = 0.388 \\ P(W_2 = 1, O_1 = a) &= (0.27)(0.6) + (0.35)(0.2) = 0.232 \end{split}$$

(c) Using the previous calculation, compute $P(W_2, O_1 = a, O_2 = b)$.

 $P(W_2, O_1 = a, O_2 = b) = P(W_2, O_1 = a)P(O_2 = b|W_2)$ $P(W_2 = 0, O_1 = a, O_2 = b) = (0.388)(0.1) = 0.0388$ $P(W_2 = 1, O_1 = a, O_2 = b) = (0.232)(0.5) = 0.116$

(d) Finally, compute $P(W_2|O_1 = a, O_2 = b)$.

Renormalizing the distribution above, we have $P(W_2 = 0 | O_1 = a, O_2 = b) = 0.0388/(0.0388 + 0.116) \approx 0.25$ $P(W_2 = 1 | O_1 = a, O_2 = b) = 0.116/(0.0388 + 0.116) \approx 0.75$