Regular Discussion 9

1 Bayes' Nets: Representation and Independence

Parts (a) and (b) pertain to the following Bayes' Net.

(a) Express the joint probability distribution as a product of terms representing individual conditional probabilities tables associated with the Bayes Net.
(b) Assume each node can take on 4 values. How many entries do the factors at A, D, and F have?

A: \qquad
D: \qquad
F: \qquad

Consider the following probability distribution tables. The joint distribution $P(A, B, C, D)$ is equal to the product of these probability distribution tables.

		A	B	$P(B \mid A)$	B	C	$P(C \mid B)$	C	D	$P(D \mid C)$
A	$P(A)$	+a	+b	0.9	+b	+c	0.8	+c	+d	0.25
+a	0.8	+a	-b	0.1	+b	-c	0.2	+c	-d	0.75
-a	0.2	-a	+b	0.6	-b	+c	0.8	-c	+d	0.5
		-a	-b	0.4	-b	-c	0.2	-c	-d	0.5

(c) State all non-conditional independence assumptions that are implied by the probability distribution tables.

You are building advanced safety features for cars that can warn a driver if they are falling asleep (A) and also calculate the probability of a crash (C) in real time. You have at your disposal 6 sensors (random variables):

- E : whether the driver's eyes are open or closed
- W : whether the steering wheel is being touched or not
- L : whether the car is in the lane or not
- S : whether the car is speeding or not
- H : whether the driver's heart rate is somewhat elevated or resting
- R : whether the car radar detects a close object or not
A influences $\{E, W, H, L, C\} . C$ is influenced by $\{A, S, L, R\}$.
(d) Draw the Bayes Net associated with the description above by adding edges between the provided nodes where appropriate.

2 HMMs

Consider the following Hidden Markov Model. O_{1} and O_{2} are supposed to be shaded.

W_{1}	$P\left(W_{1}\right)$
0	0.3
1	0.7

W_{t}	W_{t+1}	$P\left(W_{t+1} \mid W_{t}\right)$
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

W_{t}	O_{t}	$P\left(O_{t} \mid W_{t}\right)$
0	a	0.9
0	b	0.1
1	a	0.5
1	b	0.5

Suppose that we observe $O_{1}=a$ and $O_{2}=b$.
Using the forward algorithm, compute the probability distribution $P\left(W_{2} \mid O_{1}=a, O_{2}=b\right)$ one step at a time.
(a) Compute $P\left(W_{1}, O_{1}=a\right)$.
(b) Using the previous calculation, compute $P\left(W_{2}, O_{1}=a\right)$.
(c) Using the previous calculation, compute $P\left(W_{2}, O_{1}=a, O_{2}=b\right)$.
(d) Finally, compute $P\left(W_{2} \mid O_{1}=a, O_{2}=b\right)$.

