CS 188 Spring 2023

Regular Discussion 12

1 Naive Bayes

In this question, we will train a Naive Bayes classifier to predict class labels Y as a function of input features A and B. Y, A, and B are all binary variables, with domains 0 and 1. We are given 10 training points from which we will estimate our distribution.

A	1	1	1	1	0	1	0	1	1	1
B	1	0	0	1	1	1	1	0	1	1
Y	1	1	0	0	0	1	1	0	0	0

1. What are the maximum likelihood estimates for the tables P(Y), P(A|Y), and P(B|Y)?

			A	Y	P(A Y)	В	Y	P(B Y)
Y	P(Y)		0	0		0	0	
0		ĺ	1	0		1	0	
1		ĺ	0	1		0	1	
	,	ĺ	1	1		1	1	

2. Consider a new data point (A = 1, B = 1). What label would this classifier assign to this sample?

3. Let's use Laplace Smoothing to smooth out our distribution. Compute the new distribution for P(A|Y) given Laplace Smoothing with k = 2.

A	Y	P(A Y)
0	0	
1	0	
0	1	
1	1	

Q2. Backpropagation

(a) Perform forward propagation on the neural network below for x = 1 by filling in the values in the table. Note that $(i), \ldots, (vii)$ are outputs after performing the appropriate operation as indicated in the node.

(b) Below is a neural network with weights a, b, c, d, e, f. The inputs are x_1 and x_2 .

The first hidden layer computes $r_1 = \max(c \cdot x_1 + e \cdot x_2, 0)$ and $r_2 = \max(d \cdot x_1 + f \cdot x_2, 0)$. The second hidden layer computes $s_1 = \frac{1}{1 + \exp(-a \cdot r_1)}$ and $s_2 = \frac{1}{1 + \exp(-b \cdot r_2)}$. The output layer computes $y = s_1 + s_2$. Note that the weights a, b, c, d, e, f are indicated along the edges of the neural network here.

Suppose the network has inputs $x_1 = 1, x_2 = -1$. The weight values are a = 1, b = 1, c = 4, d = 1, e = 2, f = 2.

Forward propagation then computes $r_1 = 2, r_2 = 0, s_1 = 0.9, s_2 = 0.5, y = 1.4$. Note: some values are rounded.

Using the values computed from forward propagation, use backpropagation to numerically calculate the following partial derivatives. Write your answers as a single number (not an expression). You do not need a calculator. Use scratch paper if needed.

Hint: For $g(z) = \frac{1}{1 + \exp(-z)}$, the derivative is $\frac{\partial g}{\partial z} = g(z)(1 - g(z))$.

$\frac{\partial y}{\partial a}$	$\frac{\partial y}{\partial b}$	$\frac{\partial y}{\partial c}$	$\frac{\partial y}{\partial d}$	$\frac{\partial y}{\partial e}$	$\frac{\partial y}{\partial f}$