CS 188
 Spring 2023 Final Review: Bayes Nets Solutions

Q1. Bayes Nets: Inference

Consider the following Bayes Net, where we have observed that $D=+d$.

$P(A)$					
$+a$	0.5				
$-a$	0.5		$P(B \mid A)$		
:---:	:---:	:---:			
$+a$	$+b$	0.5			
$+a$	$-b$	0.5			
$-a$	$+b$	0.2			
$-a$	$-b$	0.8			

$P(C \mid A, B)$								
$+a$	$+b$	$+c$	0.8					
$+a$	$+b$	$-c$	0.2					
$+a$	$-b$	$+c$	0.6					
$+a$	$-b$	$-c$	0.4					
$-a$	$+b$	$+c$	0.2					
$-a$	$+b$	$-c$	0.8					
$-a$	$-b$	$+c$	0.1					
$-a$	$-b$	$-c$	0.9		\quad	$P(D \mid C)$		
:---:	:---:	:---:						
$+c$	$+d$	0.4						
$+c$	$-d$	0.6						
$-c$	$+d$	0.2						
$-c$	$-d$	0.8						

(a) Below is a list of samples that were collected using prior sampling. Mark the samples that would be rejected by rejection sampling.
(b) To decouple from the previous part, you now receive a new set of samples shown below:

$$
\begin{array}{llll}
+a & +b & +c & +d \\
-a & -b & -c & +d \\
+a & +b & +c & +d \\
+a & -b & -c & +d \\
-a & -b & -c & +d
\end{array}
$$

Estimate the probability $P(+a \mid+d)$ if these new samples were collected using...

(i) ... rejection sampling: \quad| $\frac{3}{5}$ |
| :---: |

(ii) ... likelihood weighting:

$$
\frac{0.4+0.4+0.2}{0.4+0.2+0.4+0.2+0.2}=\frac{1}{1}
$$

(c) Instead of sampling, we now wish to use variable elimination to calculate $P(+a \mid+d)$. We start with the factorized representation of the joint probability:

$$
P(A, B, C,+d)=P(A) P(B \mid A) P(C \mid A, B) P(+d \mid C)
$$

(i) We begin by eliminating the variable $\overline{\bar{B}}$, which creates a new factor $\underset{f}{P}$. A. Complete the expression for

(ii) After eliminating B to create a factor f_{1}, we next eliminate C to create a factor f_{2}. What are the remaining factors after both B and C are eliminated?
$p(A)$
$p(B \mid A)$
$\square p(C \mid A, B)$$p(+d \mid C)$$f_{1}$
(iii) After eliminating both B and C, we are now ready to calculate $P(+a \mid+d)$. Write an expression for $P(+a \mid+d)$ in terms of the remaining factors.

$$
P(+a \mid+d)=\frac{P(+a) f_{2}(+a,+d)}{\sum_{a} P(a) f_{2}(a,+d)}
$$

Q2. Bayes Nets: Elimination

(a) Consider running variable elimination on the Bayes Net shown below.

First, we eliminate D to create a factor f_{1} Next, we eliminate E to create a factor f_{2} Next, we eliminate H to create a factor f_{3}

From the list below, select all factors that remain after D, E and H have been eliminated.

(b) Consider the Bayes Net shown below. Each variable in the Bayes Net can take on two possible values.

You are given the query $P(C \mid F)$, which you would like to answer using variable elimination. Please find a variable elimination ordering where the largest intermediate factor created during variable elimination is as small as possible.

Elimination ordering: \qquad ABED, AEBD, or EABD
(c) Consider doing inference in an $m \times n$ lattice Bayes Net, as shown below. The network consists of $m n$ binary variables $V_{i, j}$, and you have observed that $V_{m, n}=+v_{m, n}$.

You wish to calculate $P\left(V_{1,1} \mid+v_{m, n}\right)$ using variable elimination. To maximize computational efficiency, you wish to use a variable elimination ordering for which the size of the largest generated factor is as small as possible.
(i) First consider the special case where $m=4$ and $n=5$. A reproduction of the lattice is shown below, with variable names for non-query variables omitted. Please provide your optimal elimination ordering for this example by numbering the nodes below in the order they will be eliminated (i.e. write a number such as $1,2,3, \ldots$ inside every node that will be eliminated.)

(or)

Note that there is actually more than one correct ordering, and that a few minor variations on the orderings given above are possible. However, it's important to start near the same corner as the evidence variable and to never create a factor that involves more than 4 non-evidence variables.
However, the ordering shown below is suboptimal (eliminating node 6 will create a size 2^{5} factor involving the five nodes highlighted in blue):

(ii) Now consider the general case (assume $m>2$ and $n>2$). What is the size of the largest factor generated under the most efficient elimination ordering? Your answer should be the number of rows in the factor's table, expressed in terms of m and n.
Size (number of rows) of the largest factor: \qquad $2^{\min (m, n)}$

