
CS 188
Spring 2023 Final Review: HMMs Solutions
Q1. HMMs
Consider a process where there are transitions among a finite set of states s1, · · · , sk over time steps i = 1, · · · , N .
Let the random variables X1, · · · , XN represent the state of the system at each time step and be generated as
follows:

• Sample the initial state s from an initial distribution P1(X1), and set i = 1

• Repeat the following:

1. Sample a duration d from a duration distribution PD over the integers {1, · · · ,M}, where M is the
maximum duration.

2. Remain in the current state s for the next d time steps, i.e., set

xi = xi+1 = · · · = xi+d−1 = s (1)

3. Sample a successor state s′ from a transition distribution PT (Xt|Xt−1 = s) over the other states
s′ ̸= s (so there are no self transitions)

4. Assign i = i+ d and s = s′.

This process continues indefinitely, but we only observe the first N time steps.

(a) Assuming that all three states s1, s2, s3 are different, what is the probability of the sample sequence
s1, s1, s2, s2, s2, s3, s3? Write an algebraic expression. Assume M ≥ 3.

p1(s1)pD(2)pT (s2|s1)pD(3)p(s3|s2)(1− pD(1)) (2)

At each time step i we observe a noisy version of the state Xi that we denote Yi and is produced via a conditional
distribution PE(Yi|Xi).

(b) Only in this subquestion assume that N > M . Let X1, · · · , XN and Y1, · · · , YN random variables defined
as above. What is the maximum index i ≤ N − 1 so that X1 ⊥⊥ XN |Xi, Xi+1, · · · , XN−1 is guaranteed?
i = N −M

(c) Only in this subquestion, assume the max duration M = 2, and PD uniform over {1, 2} and each xi is
in an alphabet {a, b}. For (X1, X2, X3, X4, X5, Y1, Y2, Y3, Y4, Y5) draw a Bayes Net over these 10 random
variables with the property that removing any of the edges would yield a Bayes net inconsistent with the
given distribution.
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(d) In this part we will explore how to write the described process as an HMM with an extended state space.
Write the states z = (s, t) where s is a state of the original system and t represents the time elapsed in that
state. For example, the state sequence s1, s1, s1, s2, s3, s3 would be represented as (s1, 1), (s1, 2), (s1, 3), (s2, 1), (s3, 1), (s3, 2).

Answer all of the following in terms of the parameters P1(X1), PD(d), PT (Xj+1|Xj), PE(Yi|Xi), k (total
number of possible states), N , and M (max duration).

(i) What is P (Z1)?

P (x1, t) =

{
P1(x1) if t = 1

0 o.w.
(3)

(ii) What is P (Zi+1|Zi)? Hint: You will need to break this into cases where the transition function will
behave differently.

P (Xi+1, ti+1|Xi, ti) =


PD(d ≥ ti + 1|d ≥ ti) when Xi+1 = Xi and ti+1 = ti + 1 and ti+1 ≤ M

PT (Xi+1|Xi)PD(d = ti|d ≥ ti) when Xi+1 ̸= Xi and ti+1 = 1

0 o.w.

(4)

Where PD(d ≥ ti + 1|d ≥ ti) = PD(d ≥ ti + 1)/PD(d ≥ ti).

Being in Xi, ti, we know that d was drawn d ≥ ti. Conditioning on this fact, we have two choices,
if d > ti then the next state is Xi+1 = Xi, and if d = ti then Xi+1 ̸= Xi drawn from the transition
distribution and ti+1 = 1.

(iii) What is P (Yi|Zi)?
p(Yi|Xi, ti) = PE(Yi|Xi)

(e) In this question we explore how to write an algorithm to compute P (XN |y1, · · · , yN ) using the particular
structure of this process.

Write P (Xt|y1, · · · , yt−1) in terms of other factors. Construct an answer by checking the correct boxes
below:

P (Xt|y1, · · · , yt−1) = (i) (ii) (iii)

(i)  ∑k
i=1

∑M
d=1

∑M
d′=1

# ∑k
i=1

∑M
d=1

# ∑k
i=1

# ∑M
d=1

(ii)
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# P (Zt = (Xt, d)|Zt−1 = (si, d))

# P (Xt|Xt−1 = si)

# P (Xt|Xt−1 = sd)

 P (Zt = (Xt, d
′)|Zt−1 = (si, d))

(iii) # P (Zt−1 = (sd, i)|y1, · · · , yt−1)

# P (Xt−1 = sd|y1, · · · , yt−1)

 P (Zt−1 = (si, d)|y1, · · · , yt−1)

# P (Xt−1 = si|y1, · · · , yt−1)
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Q2. Planning ahead with HMMs

Pacman is tired of using HMMs to
estimate the location of ghosts. He
wants to use HMMs to plan what ac-
tions to take in order to maximize
his utility. Pacman uses the HMM
(drawn to the right) of length T to
model the planning problem. In the
HMM, X1:T is the sequence of hidden
states of Pacman’s world, A1:T are ac-
tions Pacman can take, and Ut is the
utility Pacman receives at the particu-
lar hidden state Xt. Notice that there
are no evidence variables, and utilities
are not discounted.

. . . Xt−1 Xt Xt+1 . . .

. . . Ut−1 Ut Ut+1

At−1 At At+1

. . .

. . .. . .

(a) The belief at time t is defined as Bt(Xt) = p(Xt|a1:t). The forward algorithm update has the following
form:

Bt(Xt) = (i) (ii) Bt−1(xt−1).

Complete the expression by choosing the option that fills in each blank.

(i) # maxxt−1
 ∑

xt−1
# maxxt

# ∑
xt

# 1

(ii) # p(Xt|xt−1) # p(Xt|xt−1)p(Xt|at) # p(Xt)  p(Xt|xt−1, at) # 1

# None of the above combinations is correct

Bt(Xt) = p(Xt|a1:t)

=
∑
xt−1

p(Xt|xt−1, at)p(xt−1|a1:t−1)

=
∑
xt−1

p(Xt|xt−1, at)Bt−1(xt−1)

(b) Pacman would like to take actions A1:T that maximizes the expected sum of utilities, which has the
following form:

MEU1:T = (i) (ii) (iii) (iv) (v)

Complete the expression by choosing the option that fills in each blank.

(i)  maxa1:T
# maxaT

# ∑
a1:T

# ∑
aT

# 1

(ii) # maxt # ∏T
t=1  ∑T

t=1 # mint # 1

(iii) # ∑
xt,at

 ∑
xt

# ∑
at

# ∑
xT

# 1

(iv) # p(xt|xt−1, at) # p(xt)  Bt(xt) # BT (xT ) # 1

(v) # UT # 1
Ut

# 1
UT

 Ut # 1

# None of the above combinations is correct

MEU1:T = max
a1:T

T∑
t=1

∑
xt

Bt(xt)Ut(xt)
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(c) A greedy ghost now offers to tell Pacman the values of some of the hidden states. Pacman needs your
help to figure out if the ghost’s information is useful. Assume that the transition function p(xt|xt−1, at)
is not deterministic. With respect to the utility Ut, mark all that can be True:

■ VPI(Xt−1|Xt−2) > 0 □ VPI(Xt−2|Xt−1) > 0 ■ VPI(Xt−1|Xt−2) = 0 ■ VPI(Xt−2|Xt−1) =

0 □ None of the above

It is always possible that VPI = 0. Can guarantee VPI(E|e) is not greater than 0 if E is independent of
parents(U) given e.

(d) Pacman notices that calculating the beliefs under this model is very slow using exact inference. He
therefore decides to try out various particle filter methods to speed up inference. Order the following
methods by how accurate their estimate of BT (XT ) is? If different methods give an equivalently accurate
estimate, mark them as the same number.

Most
accurate

Least
accurate

Exact inference  1 # 2 # 3 # 4
Particle filtering with no resampling # 1  2 # 3 # 4
Particle filtering with resampling before every time elapse # 1 # 2 # 3  4
Particle filtering with resampling before every other time elapse # 1 # 2  3 # 4

Exact inference will always be more accurate than using a particle filter. When comparing the particle
filter resampling approaches, notice that because there are no observations, each particle will have weight
1. Therefore resampling when particle weights are 1 could lead to particles being lost and hence prove
bad.
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