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SP23 Homework 7 Part 2 Solutions. [31 pts]
Q1 Quadcopter: Data Analyst) (10 pts)
As in the last homework, we will consider a Bayes net for quadcopter flight. Our Bayes net has the following variables:
W (weather), S (signal strength), P (true position), R (reading of the position), C (control from the pilot), and A
(smart alarm to warn pilot if that control could cause a collision).

We will also consider the quadcopter flight over time. Here, flight can be considered in discrete time-steps: t ∈
0, 1, 2, ..., N − 1 with, for example, Pt representing the true position P at discrete time-step t. Suppose the weather
(W) does not change throughout the quadcopter flight.

One key thing to note here is that there are edges going between time t and time t + 1: The true position at time
t+ 1 depends on the true position at time t as well as the control input from time t.

Let’s look at this setup from the perspective of Diana, a data analyst who can only observe the output from a
data-logger, which stores R (reading of position) and C (control from the pilot).

Q1.1) List all the hidden variables and observed variables in this setup.

■ W ■ S0 ■ S1:N−1 ■ P0 ■ P1:N−1 □ R0 □ R1:N−1 □ C0 □ C1:N−1 ■ A0 ■ A1:N−1

All the unshaded nodes.

Q1.2) List all observed variables in this setup.

□ W □ S0 □ S1:N−1 □ P0 □ P1:N−1 ■ R0 ■ R1:N−1 ■ C0 ■ C1:N−1 □ A0 □ A1:N−1

All shaded nodes.

Q1.3) In a few sentences, how is this setup different from the vanilla Hidden Markov Model you saw in lecture? You
should identify at least 2 major differences.

Differences include but are not limited to:
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1. There is one overarching hidden variable that doesn’t change with respect to time.

2. There are multiple observation variables and multiple hidden variables at any time step.

3. There is a hidden variable (A) at the tail of observed variables (R and C).

Q1.4) As a data analyst, Diana’s responsibility is to infer the true positions of the quadcopter throughout its flight.
In other words, she wants to find a list of true positions p0, p1, p2, ..., pN−1 that are the most likely to have happened,
given the recorded readings r0, r1, r2, ..., rN−1 and controls c0, c1, c2, ..., cN−1.

(1) Write down the probability that Diana tries to maximize in terms of a joint probability.

Note that the objective that you write below is such that Diana is solving the following problem: maxp0,p1,...,pN

(maximization objective).

Maximization objective: P (P0 = p0, P1 = p1, . . . , PN−1 = pN−1, R0 = r0 . . . RN−1 = rN−1, C0 = c0 . . . CN−1 =
cN−1)

(2) Interpret the meaning of that probability below:

Explanation: Probability of the positions being there and the observations of reading/controls being there also.

Q1.5) Morris, a colleague of Diana’s, points out that maximizing the joint probability is the same as maximizing a
conditional probability where all evidence (r0, r1, r2, . . . and c0, c1, c2, . . . ) are moved to the right of the conditional
bar. Is Morris right?

 Yes, and I will provide a proof/explanation in Q1.6.

# No, and I will provide a counter example in Q1.6.

Q1.6) Provide a proof and explanation or counter example for your selection in Q1.5:

Yes. maxpP (p, r, c) is the same as maxpP (p|r, c) because when you factor the joint, the P (r, c) is independent of the
optimization variables p and can thus be considered a constant.

Q2 The Markov Property) (5 pts)

In this setup, conditioned on all observed evidence, does the sequence S0, S2, ...., SN−2 follow the Markov property?
Please justify your answer.

No because St+1 is not conditionally independent of St−1 given St. We can see this by just examining the subgraph
containing St−1, W , and St+1. None of the Bayes net independence rules apply in this case.

Q3 Forward Algorithm Proxy) (10 pts)

Conner, a colleague of Diana’s, would like to use this model (with the Rt and Ct observations) to perform something
analogous to the forward algorithm for HMMs to infer the true positions. Let’s analyze below the effects that certain
decisions can have on the outcome of running the forward algorithm.

Note that when we say to not include some variable in the algorithm, we mean that we marginalize/sum out that
variable. For example, if we do not want to include W in the algorithm, then we replace P (St|W ) everywhere with
P (St), where P (St) =

∑
W P (St|W )P (W ).

Q3.1) He argues that since W (weather) does not depend on time, and is not something he is directly interested in,
he does not need to include it in the forward algorithm.

What effect does not including W in the forward algorithm have on the accuracy of the resulting belief state
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calculations?

This makes everything less informed than if you were to include the W, so accuracy is worse. Another way to explain
by not including W, we make the assumption that St are independent of each other, which is an incorrect assumption.

What effect does not including W in the forward algorithm have on the efficiency calculations?

Efficiency is better since you only need to include P (St) everywhere, instead of P (St|W ). Another way to explain is
that P (St) has fewer entries than P (St|W )

Q3.2) He also argues that he does not need to include hidden state A (smart alarm warning) in the forward algorithm.

What effect does not including A in the forward algorithm have on the accuracy of the resulting belief state calcu-
lations? Please justify your answer.

Since A is downstream of the observations and also doesn’t effect the next timesteps in any way, not including A in
the forward algorithm has no effect on accuracy.

What effect does not including A in the forward algorithm have on the efficiency of calculations?

No effect of efficiency, since it shouldn’t be included anyway. Note: if student says that it reduces efficiency because
of the extra marginalization step mentioned above (since you wouldn’t have done that otherwise), consider that
correct, even though you don’t need to do it anyway.

Q3.3) Last but not least, Conner recalls that for the forward algorithm, one should calculate the belief at time-step t
by conditioning on evidence up to t−1, instead of conditioning on evidence from the entire trajectory (up to N −1).
Let’s assume that some other algorithm allows us to use evidence from the full trajectory (t = 0 to t = N − 1) in
order to infer each belief state. What is an example of a situation (in this setup, with the quadcopter variables) that
illustrates that incorporating evidence from the full trajectory can result in better belief states than incorporating
evidence only from the prior steps?

 If the signal strength is bad before t− 1, but gets better later.
# If the signal strength is good up to t− 1, and the signal is lost later.
# There isn’t such example because using evidence up to t− 1 gives us the optimal belief.

If the signal strength is bad at the beginning of the trajectory but gets better later, the information from later in
the trajectory can greatly improve the belief state estimates earlier in the trajectory (whereas if only evidence up to
t− 1 is allowed to be used at step t, then those early belief states would not have been good).

Q4 Policy Reconstruction) (6 pts)

Emily, another colleague of Diana’s, would like to use this model to reconstruct the pilot’s policy from data. Let’s
analyze below the effects that certain decisions can have on the outcome of doing policy reconstruction.

Q4.1) Emily states that the probabilistic model for the pilot’s policy is entirely captured in one Conditional
Probability Table from the Bayes Net Representation. Which table do you think this is?

P (C|R)

Explain why this table captures the pilot’s policy:
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The probability of control given a reading of position is exactly what a policy looks like in this representation

Q4.2) Emily argues that if we were given a lot of data from the data logger, we could reconstruct the probabilistic
model for the pilot’s policy. Is she right?

 Yes, and I will provide an overview of how to reconstruct the pilot’s policy from the data in Q4.3.

# No, and I will provide a list of reasons for why we cannot reconstruct the policy in Q4.3.

Q4.3) Provide a justification for your selection in Q4.2.

If you selected yes, provide an overview of how to reconstruct the pilot’s policy from the data. If you selected no,
provide a list of reasons for why we cannot reconstruct the policy.

Answer to Q4.2 is Yes. Counting is your friend. We can reconstruct the policy by filling in a table of R and C where
each entry is the number of times (r, c) appear in the data. We then use this table to construct a CPT table for
P (C|R).
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