

ChatGPT – calm down everyone

▪ Q: which is bigger? an elephant or a cat?

▪ A: An elephant is bigger than a cat.

▪ Q: which is not bigger than the other? an elephant or a cat?

▪ A: Neither an elephant nor a cat is bigger than the other.

▪ Q: what is the largest even number?

▪ A: The largest even number is 9,999,999,998.

▪ Q: I started with 20 dollars and gave 10 dollars to my friend.

How much do we have in total?

▪ A: You and your friend have a total of 30 dollars.

Recap

▪ A* expands the fringe node with lowest f value where

▪ f(n) = g(n) + h(n)

▪ g(n) is the cost to reach n

▪ h(n) is an admissible estimate of the least cost from n to a goal node:
0 h(n) h*(n)

▪ A* tree search is optimal

▪ Its performance depends heavily on the heuristic h

Creating Heuristics

Creating Admissible Heuristics

▪ Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

▪ Problem P2 is a relaxed version of P1 if A2(s) A1(s) for every s

▪ Theorem: h2
*(s) h1

*(s) for every s, so h2
*(s) is admissible for P1

15

366

Example: 8 Puzzle

▪ What are the states?

▪ How many states?

▪ What are the actions?

▪ What are the step costs?

Start State Goal StateActions

8 Puzzle I

▪ Heuristic: Number of tiles misplaced

▪ Why is it admissible?

▪ h(start) = 8

Average nodes expanded when
the optimal path has…

…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

A*TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore

8 Puzzle II

▪ What if we had an easier 8-puzzle where
any tile could slide any direction at any
time, ignoring other tiles?

▪ Total Manhattan distance

▪ Why is it admissible?

▪ h(start) = 3 + 1 + 2 + … = 18
Average nodes expanded when
the optimal path has…

…4 steps …8 steps …12 steps

A*TILES 13 39 227

A*MANHATTAN 12 25 73

Start State Goal State

Combining heuristics

▪ Dominance: h1 ≥ h2 if

n h1(n) h2(n)
▪ Roughly speaking, larger is better as long as both are admissible

▪ The zero heuristic is pretty bad (what does A* do with h=0?)

▪ The exact heuristic is pretty good, but usually too expensive!

▪ What if we have two heuristics, neither dominates the other?
▪ Form a new heuristic by taking the max of both:

h(n) = max(h1(n), h2(n))
▪ Max of admissible heuristics is admissible and dominates both!

Example: Knight’s moves

▪ Minimum number of knight’s moves to get from A to B?
▪ h1 = (Manhattan distance)/3

▪ h1
’ = h1 rounded up to correct parity (even if A, B same color, odd otherwise)

▪ h2 = (Euclidean distance)/√5 (rounded up to correct parity)

▪ h3 = (max x or y shift)/2 (rounded up to correct parity)

▪ h(n) = max(h1
’(n), h2(n), h3(n)) is admissible!

Optimality of A* Graph Search

This part is a bit fiddly,
sorry about that

Quiz: State Space Graphs vs. Search Trees

Consider a rectangular grid: How many states within d steps of start?

How many states in search tree of depth d?

(a) (b) (c)Basic idea of graph search: don’t re-expand a state that has been expanded previously

A* Graph Search Gone Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

State space graph Search tree

Simple check against expanded set blocks C
Fancy check allows new C if cheaper than old
but requires recalculating C’s descendants

Consistency of Heuristics

▪ Main idea: estimated heuristic costs ≤ actual costs

▪ Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ h*(A)

▪ Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ c(A,C)

or h(A) ≤ c(A,C) + h(C) (triangle inequality)

▪ Note: h* necessarily satisfies triangle inequality

▪ Consequences of consistency:

▪ The f value along a path never decreases:

h(A) ≤ c(A,C) + h(C) => g(A) + h(A) ≤ g(A) + c(A,C) + h(C)

▪ A* graph search is optimal

h=1

A

G

h=4 C

1

h=3

Optimality of A* Graph Search

▪ Sketch: consider what A* does with a
consistent heuristic:

▪ Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

▪ Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

▪ Result: A* graph search is optimal

…

f 3

f 2

f 1

Optimality

▪ Tree search:
▪ A* is optimal if heuristic is admissible

▪ Graph search:
▪ A* optimal if heuristic is consistent

▪ Consistency implies admissibility

▪ Most natural admissible heuristics tend to be
consistent, especially if from relaxed problems

But…

▪ A* keeps the entire explored region in memory

▪ => will run out of space before you get bored waiting for the answer

▪ There are variants that use less memory (Section 3.5.5):

▪ IDA* works like iterative deepening, except it uses an f-limit instead of a depth limit
▪ On each iteration, remember the smallest f-value that exceeds the current limit, use as new limit

▪ Very inefficient when f is real-valued and each node has a unique value

▪ RBFS is a recursive depth-first search that uses an f-limit = the f-value of the best
alternative path available from any ancestor of the current node
▪ When the limit is exceeded, the recursion unwinds but remembers the best reachable f-value on

that branch

▪ SMA* uses all available memory for the queue, minimizing thrashing
▪ When full, drop worst node on the queue but remember its value in the parent

A*: Summary

▪ A* orders nodes in the queue by f(n) = g(n) + h(n)

▪ A* is optimal for trees/graphs with admissible/consistent heuristics

▪ Heuristic design is key: often use relaxed problems

g

g

h

CS 188: Artificial Intelligence

Local search

Instructors: Stuart Russell and Peyrin Kao

University of California, Berkeley

Local search algorithms

▪ In many optimization problems, path is irrelevant; the goal state is the solution

▪ Then state space = set of “complete” configurations;
find configuration satisfying constraints, e.g., n-queens problem; or, find
optimal configuration, e.g., travelling salesperson problem

▪ In such cases, can use iterative improvement algorithms: keep a single “current”
state, try to improve it

▪ Constant space, suitable for online as well as offline search

▪ More or less unavoidable if the “state” is yourself (i.e., learning)

Hill Climbing

▪ Simple, general idea:
▪ Start wherever

▪ Repeat: move to the best neighboring state

▪ If no neighbors better than current, quit

Heuristic for n-queens problem

▪ Goal: n queens on board with no conflicts, i.e., no queen attacking another

▪ States: n queens on board, one per column

▪ Actions: move a queen in its column

▪ Heuristic value function: number of conflicts

Hill-climbing algorithm

function HILL-CLIMBING(problem) returns a state

current ← make-node(problem.initial-state)

loop do

neighbor ← a highest-valued successor of current

if neighbor.value ≤ current.value then

return current.state

current ← neighbor

“Like climbing Everest in thick fog with amnesia”

Global and local maxima

Random restarts
▪ find global optimum
▪ duh

Random sideways moves
▪ Escape from shoulders
▪ Loop forever on flat

local maxima

Hill-climbing on the 8-queens problem

▪ No sideways moves:
▪ Succeeds w/ prob. 0.14

▪ Average number of moves per trial:
▪ 4 when succeeding, 3 when getting stuck

▪ Expected total number of moves needed:
▪ 3(1-p)/p + 4 =~ 22 moves

▪ Allowing 100 sideways moves:
▪ Succeeds w/ prob. 0.94

▪ Average number of moves per trial:
▪ 21 when succeeding, 65 when getting stuck

▪ Expected total number of moves needed:
▪ 65(1-p)/p + 21 =~ 25 moves

Moral: algorithms with knobs
to twiddle are irritating

Simulated annealing

▪ Resembles the annealing process used to cool metals slowly to
reach an ordered (low-energy) state

▪ Basic idea:

▪ Allow “bad” moves occasionally, depending on “temperature”

▪ High temperature => more bad moves allowed, shake the system out of
its local minimum

▪ Gradually reduce temperature according to some schedule

▪ Sounds pretty flaky, doesn’t it?

Simulated annealing algorithm

function SIMULATED-ANNEALING(problem,schedule) returns a state

current ← problem.initial-state

for t = 1 to ∞ do

T ←schedule(t)
if T = 0 then return current
next ← a randomly selected successor of current

∆E ← next.value – current.value
if ∆E > 0 then current ← next

else current ← next only with probability e∆E/T

Simulated Annealing

▪ Theoretical guarantee:
▪ Stationary distribution (Boltzmann): P(x) eE(x)/T

▪ If T decreased slowly enough, will converge to optimal state!

▪ Proof sketch
▪ Consider two adjacent states x, y with E(y) > E(x) [high is good]

▪ Assume x→y and y→x and outdegrees D(x) = D(y) = D
▪ Let P(x), P(y) be the equilibrium occupancy probabilities at T
▪ Let P(x→y) be the probability that state x transitions to state y

x y

Occupation probability as a function of T

x

E(x)

Simulated Annealing

▪ Is this convergence an interesting guarantee?

▪ Sounds like magic, but reality is reality:
▪ The more downhill steps you need to escape a local optimum,

the less likely you are to ever make them all in a row
▪ “Slowly enough” may mean exponentially slowly
▪ Random restart hillclimbing also converges to optimal state…

▪ Simulated annealing and its relatives are a key
workhorse in VLSI layout and other optimal
configuration problems

Local beam search

▪ Basic idea:

▪ K copies of a local search algorithm, initialized randomly

▪ For each iteration

▪ Generate ALL successors from K current states

▪ Choose best K of these to be the new current states

Or, K chosen randomly with

a bias towards good ones

Beam search example (K=4)

8

6

7

8

9

7

7

7

6

8

9

9

8

7

9

3

5

10

10

9

X
X

X

X
9

8

9

9

10

9

9

10

X

X

X

X

Local beam search

▪ Why is this different from K local searches in parallel?

▪ The searches communicate! “Come over here, the grass is greener!”

▪ What other well-known algorithm does this remind you of?

▪ Evolution!

Genetic algorithms

▪ Genetic algorithms use a natural selection metaphor
▪ Resample K individuals at each step (selection) weighted by fitness function

▪ Combine by pairwise crossover operators, plus mutation to give variety

Example: N-Queens

▪ Does crossover make sense here?

▪ What would mutation be?

▪ What would a good fitness function be?

Local search in continuous spaces

Example: Siting airports in Romania

Place 3 airports to minimize the sum of squared distances from each city to its nearest airport

Airport locations
x = (x1,y1), (x2,y2), (x3,y3)

City locations (xc,yc)

Ca = cities closest to airport a

Objective: minimize

f(x) = a cCa
(xa - xc)

2 + (ya - yc)
2

Handling a continuous state/action space

1. Discretize it!

▪ Define a grid with increment , use any of the discrete algorithms

2. Choose random perturbations to the state

a. First-choice hill-climbing: keep trying until something improves the state

b. Simulated annealing

3. Compute gradient of f(x) analytically

Finding extrema in continuous space

▪ Gradient vector f(x) = (f/x1, f/y1, f/x2, …)T

▪ For the airports, f(x) = a cCa
(xa - xc)

2 + (ya - yc)
2

▪ f/x1 =cC1
2(x1 - xc)

▪ At an extremum, f(x) = 0

▪ Can sometimes solve in closed form: x1 = (cC1
xc)/|C1|

▪ Is this a local or global minimum of f?

▪ Gradient descent: x x - f(x)

▪ Huge range of algorithms for finding extrema using gradients

▪ Many configuration and optimization problems can be
formulated as local search

▪ General families of algorithms:

▪ Hill-climbing, continuous optimization

▪ Simulated annealing (and other stochastic methods)

▪ Local beam search: multiple interaction searches

▪ Genetic algorithms: break and recombine states

Many machine learning algorithms are local searches

Summary

