Simulated annealing

- Resembles the annealing process used to cool metals slowly to reach an ordered (low-energy) state
- Basic idea:
 - Allow "bad" moves occasionally, depending on "temperature"
 - High temperature => more bad moves allowed, shake the system out of its local minimum
 - Gradually reduce temperature according to some schedule
 - Sounds pretty flaky, doesn't it?

Simulated annealing algorithm

- function SIMULATED-ANNEALING(problem, schedule) returns a state
- current ← problem.initial-state
- for t = 1 to ∞ do
 - $T \leftarrow schedule(t)$
 - if T = 0 then return current
 - $\mathsf{next} \leftarrow \mathsf{a} \text{ randomly selected successor of } \mathsf{current}$
 - $\Delta E \leftarrow next.value current.value$
 - **if** $\Delta E > 0$ **then** current \leftarrow next
 - else current \leftarrow next only with probability $e^{\Delta E/T}$

Simulated Annealing

- Theoretical guarantee:
 - Stationary distribution (Boltzmann): $P(x) \propto e^{E(x)/T}$
 - If T decreased slowly enough, will converge to optimal state!
- Proof sketch
 - Consider two adjacent states x, y with E(y) > E(x) [high is good]
 - Assume $x \rightarrow y$ and $y \rightarrow x$ and outdegrees D(x) = D(y) = D
 - Let P(x), P(y) be the equilibrium occupancy probabilities at T
 - Let $P(x \rightarrow y)$ be the probability that state x transitions to state y

Occupation probability as a function of *T*

Simulated Annealing

- Is this convergence an interesting guarantee?
- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
 - "Slowly enough" may mean exponentially slowly
 - Random restart hillclimbing also converges to optimal state...
- Simulated annealing and its relatives are a key workhorse in VLSI layout and other optimal configuration problems

Local beam search

Or, K chosen randomly with

- Basic idea:
 - K copies of a local search algorithm, initialized randomly
 - For each iteration
 - a bias towards good ones
 Generate ALL successors from K current states
 - Choose best K of these to be the new current states

Beam search example (K=4)

Local beam search

- Why is this different from *K* local searches in parallel?
 - The searches communicate! "Come over here, the grass is greener!"
- What other well-known algorithm does this remind you of?
 - Evolution!

Genetic algorithms

- Genetic algorithms use a natural selection metaphor
 - Resample K individuals at each step (selection) weighted by fitness function
 - Combine by pairwise crossover operators, plus mutation to give variety

Example: N-Queens

- Does crossover make sense here?
- What would mutation be?
- What would a good fitness function be?

Local search in continuous spaces

Example: Siting airports in Romania

Place 3 airports to minimize the sum of squared distances from each city to its nearest airport

Handling a continuous state/action space

1. Discretize it!

- Define a grid with increment δ , use any of the discrete algorithms
- 2. Choose random perturbations to the state
 - a. First-choice hill-climbing: keep trying until something improves the state
 - b. Simulated annealing
- 3. Compute gradient of *f*(**x**) analytically

Finding extrema in continuous space

- Gradient vector $\nabla f(\mathbf{x}) = (\partial f / \partial x_1, \partial f / \partial y_1, \partial f / \partial x_2, ...)^{\mathsf{T}}$
- For the airports, $f(\mathbf{x}) = \sum_a \sum_{c \in C_a} (x_a x_c)^2 + (y_a y_c)^2$
- $\partial f/\partial x_1 = \sum_{c \in C_1} 2(x_1 x_c)$
- At an extremum, $\nabla f(\mathbf{x}) = 0$
- Can sometimes solve in closed form: $x_1 = (\sum_{c \in C_1} x_c) / |C_1|$
- Is this a local or global minimum of *f*?
- Gradient descent: $\mathbf{x} \leftarrow \mathbf{x} \alpha \nabla f(\mathbf{x})$
 - Huge range of algorithms for finding extrema using gradients

Summary

- Many configuration and optimization problems can be formulated as local search
- General families of algorithms:
 - Hill-climbing, continuous optimization
 - Simulated annealing (and other stochastic methods)
 - Local beam search: multiple interaction searches
 - Genetic algorithms: break and recombine states

Many machine learning algorithms are local searches

CS 188: Artificial Intelligence

Propositional Logic I

Instructors: Stuart Russell and Peyrin Kao

University of California, Berkeley

Outline

1. Propositional Logic I

- Basic concepts of knowledge, logic, reasoning
- Propositional logic: syntax and semantics, Pacworld example
- 2. Propositional logic II
 - Inference by theorem proving (briefly) and model checking
 - A Pac agent using propositional logic

Agents that know things

- Agents acquire knowledge through perception, learning, language
 - Knowledge of the effects of actions ("transition model")
 - Knowledge of how the world affects sensors ("sensor model")
 - Knowledge of the current state of the world
- Can keep track of a partially observable world
- Can formulate plans to achieve goals
- Can design and build gravitational wave detectors.....

LIGO

Knowledge, contd.

- Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent (or other system):
 - Tell it what it needs to know (or have it Learn the knowledge)
 - Then it can Ask itself what to do—answers should follow from the KB
- Agents can be viewed at the *knowledge level* i.e., what they *know*, regardless of how implemented
- A single inference algorithm can answer any answerable question

Knowledge base Inference engine

Domain-specific facts

Generic code

Logic

- *Syntax*: What sentences are allowed?
- Semantics:
 - What are the **possible worlds**?
 - Which sentences are true in which worlds? (i.e., definition of truth)

Semantícsland

Different kinds of logic

Propositional logic

- Syntax: $P \lor (\neg Q \land R)$; $X_1 \Leftrightarrow$ (Raining $\Rightarrow \neg$ Sunny)
- Possible world: {P=true,Q=true,R=false,S=true} or 1101
- Semantics: $\alpha \land \beta$ is true in a world iff is α true and β is true (etc.)
- First-order logic
 - Syntax: $\forall x \exists y P(x,y) \land \neg Q(Joe,f(x)) \Rightarrow f(x)=f(y)$
 - Possible world: Objects o₁, o₂, o₃; P holds for <o₁, o₂>; Q holds for <o₃>; f(o₁)=o₁; Joe=o₃; etc.
 - Semantics: $\phi(\sigma)$ is true in a world if $\sigma = o_j$ and ϕ holds for o_j ; etc.

Different kinds of logic, contd.

Relational databases:

- Syntax: ground relational sentences, e.g., Sibling(Ali,Bo)
- Possible worlds: (typed) objects and (typed) relations
- Semantics: sentences in the DB are true, everything else is false
 - Cannot express disjunction, implication, universals, etc.
 - Query language (SQL etc.) typically some variant of first-order logic
 - Often augmented by first-order rule languages, e.g., Datalog
- Knowledge graphs (roughly: relational DB + ontology of types and relations)
 - Google Knowledge Graph: 5 billion entities, 500 billion facts, >30% of queries
 - Facebook network: 2.93 billion people, trillions of posts, maybe quadrillions of facts

Inference: entailment

- **Entailment**: $\alpha \models \beta$ (" α entails β " or " β follows from α ") iff in every world where α is true, β is also true
 - I.e., the α -worlds are a <u>subset</u> of the β -worlds [models(α) \subseteq models(β)]
- In the example, $\alpha_2 \models \alpha_1$
- (Say α_2 is $\neg Q \land R \land S \land W$ α_1 is $\neg Q$) α_1

Inference: proofs

- A proof is a *demonstration* of entailment between α and β
- **Sound** algorithm: everything it claims to prove is in fact entailed
- Complete algorithm: every that is entailed can be proved

Inference: proofs

Method 1: model-checking

- For every possible world, if α is true make sure that is β true too
- OK for propositional logic (finitely many worlds); not easy for first-order logic

Method 2: theorem-proving

- Search for a sequence of proof steps (applications of *inference rules*) leading from α to β
- E.g., from P and (P ⇒ Q), infer Q by Modus Ponens

Propositional logic syntax

- Given: a set of proposition symbols {X₁, X₂,..., X_n}
 - (we often add True and False for convenience)
- X_i is a sentence
- If α is a sentence then $\neg \alpha$ is a sentence
- If α and β are sentences then $\alpha \wedge \beta$ is a sentence
- If α and β are sentences then $\alpha \lor \beta$ is a sentence
- If α and β are sentences then $\alpha \Rightarrow \beta$ is a sentence
- If α and β are sentences then $\alpha \Leftrightarrow \beta$ is a sentence
- And p.s. there are no other sentences!

Propositional logic semantics

- Let m be a model assigning true or false to {X₁, X₂,..., X_n}
- If α is a symbol then its truth value is given in *m*
- $\neg \alpha$ is true in *m* iff α is false in *m*
- $\alpha \wedge \beta$ is true in *m* iff α is true in *m* and β is true in *m*
- $\alpha \lor \beta$ is true in *m* iff α is true in *m* or β is true in *m*
- $\alpha \Rightarrow \beta$ is true in *m* iff α is false in *m* or β is true in *m*
- $\alpha \Leftrightarrow \beta$ is true in *m* iff $\alpha \Rightarrow \beta$ is true in *m* and $\beta \Rightarrow \alpha$ is true in *m*

Example: Partially observable Pacman

- Pacman knows the map but perceives just wall/gap to NSEW
- Formulation: what variables do we need?
 - Wall locations
 - Wall_0,0 there is a wall at [0,0]
 - Wall_0,1 there is a wall at [0,1], etc. (N symbols for N locations)
 - Percepts

Diocked_W (blocked by wall to my West) etc.

- Blocked_W_0 (blocked by wall to my West <u>at time 0</u>) etc. (47 symbols for T time steps)
- Actions
 - W_0 (Pacman moves West at time 0), E_0 etc. (4T symbols)
- Pacman's location
 - At_0,0_0 (Pacman is at [0,0] at time 0), At_0,1_0 etc. (NT symbols)

How many possible worlds?

- N locations, T time steps => N + 4T + 4T + NT = O(NT) variables
- *O*(2^{*NT*}) possible worlds!
- N=200, T=400 => ~10²⁴⁰⁰⁰ worlds
- Each world is a complete "history"
 - But most of them are pretty weird!

Pacman's knowledge base: Map

- Pacman knows where the walls are:
 - Wall_0,0 ^ Wall_0,1 ^ Wall_0,2 ^ Wall_0,3 ^ Wall_0,4 ^ Wall_1,4 ^ ...
- Pacman knows where the walls aren't!
 - \neg Wall_1,1 $\land \neg$ Wall_1,2 $\land \neg$ Wall_1,3 $\land \neg$ Wall_2,1 $\land \neg$ Wall_2,2 $\land \dots$

Pacman's knowledge base: Initial state

- Pacman doesn't know where he is
- But he knows he's somewhere!
 - At_1,1_0 \lor At_1,2_0 \lor At_1,3_0 \lor At_2,1_0 \lor ...

Pacman's knowledge base: Sensor model

- State facts about how Pacman's percepts arise...
 - Percept variable at t> \leftarrow <some condition on world at t>
- Pacman perceives a wall to the West at time t if and only if he is in x, y and there is a wall at x-1, y
 - Blocked_W_0 \Leftrightarrow ((At_1,1_0 \land Wall_0,1) v (At_1,2_0 \land Wall_0,2) v
 - (At_1,3_0 ^ Wall_0,3) v)
 - 4T sentences, each of size O(N)
 - Note: these are valid for any map

Pacman's knowledge base: Transition model

- How does each state variable at each time gets its value?
 - Here we care about location variables, e.g., At_3,3_17
- A state variable X gets its value according to a successor-state axiom
 - X_t ⇔ [X_t-1 ∧ ¬(some action_t-1 made it false)] v
 [¬X t-1 ∧ (some action t-1 made it true)]
- For Pacman location:
 - At_3,3_17 ⇔ [At_3,3_16 ∧ ¬((¬Wall_3,4 ∧ N_16) ∨ (¬Wall_4,3 ∧ E_16) ∨ ...)]
 v [¬At_3,3_16 ∧ ((At_3,2_16 ∧ ¬Wall_3,3 ∧ N_16) ∨ ...)]
 (At_2,3_16 ∧ ¬Wall_3,3 ∧ N_16) ∨ ...)]

How many sentences?

- Vast majority of KB occupied by O(NT) transition model sentences
 - Each about 10 lines of text
 - N=200, T=400 => ~800,000 lines of text, or 20,000 pages
- This is because propositional logic has limited expressive power
- Are we really going to write 20,000 pages of logic sentences???
- No, but your code will generate all those sentences!
- In first-order logic, we need O(1) transition model sentences
- (State-space search uses atomic states: how do we keep the transition model representation small???)

Some reasoning tasks

Localization with a map and local sensing:

- Given an initial KB, plus a sequence of percepts and actions, where am I?
- Mapping with a location sensor:
 - Given an initial KB, plus a sequence of percepts and actions, what is the map?
- Simultaneous localization and mapping:
 - Given ..., where am I and what is the map?
- Planning:
 - Given ..., what action sequence is guaranteed to reach the goal?

ALL OF THESE USE THE SAME KB AND THE SAME ALGORITHM!!

Summary

- One possible agent architecture: knowledge + inference
- Logics provide a formal way to encode knowledge
 - A logic is defined by: syntax, set of possible worlds, truth condition
- A simple KB for Pacman covers the initial state, sensor model, and transition model
- Logical inference computes entailment relations among sentences, enabling a wide range of tasks to be solved