
Simulated annealing

§ Resembles the annealing process used to cool metals slowly to 
reach an ordered (low-energy) state

§ Basic idea: 
§ Allow “bad” moves occasionally, depending on “temperature”
§ High temperature => more bad moves allowed, shake the system out of 

its local minimum
§ Gradually reduce temperature according to some schedule
§ Sounds pretty flaky, doesn’t it?



Simulated annealing algorithm

function SIMULATED-ANNEALING(problem,schedule) returns a  state 
current ← problem.initial-state 
for t = 1 to ∞ do

T ←schedule(t)
if T = 0 then return current
next ← a randomly selected successor of current
∆E ← next.value – current.value
if ∆E > 0 then current ← next

else current ← next only with probability e∆E/T



Simulated Annealing

§ Theoretical guarantee:
§ Stationary distribution (Boltzmann): P(x) a eE(x)/T
§ If T decreased slowly enough, will converge to optimal state!

§ Proof sketch 
§ Consider two adjacent states x, y with E(y) > E(x) [high is good]
§ Assume x®y and y®x and outdegrees D(x) = D(y) = D
§ Let P(x), P(y) be the equilibrium occupancy probabilities at T
§ Let P(x®y) be the probability that state x transitions to state y

x y



Occupation probability as a function of T
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Simulated Annealing

§ Is this convergence an interesting guarantee?

§ Sounds like magic, but reality is reality:
§ The more downhill steps you need to escape a local optimum, 

the less likely you are to ever make them all in a row
§ “Slowly enough” may mean exponentially slowly
§ Random restart hillclimbing also converges to optimal state…

§ Simulated annealing and its relatives are a key 
workhorse in VLSI layout and other optimal 
configuration problems



Local beam search

§ Basic idea:
§ K copies of a local search algorithm, initialized randomly
§ For each iteration

§ Generate ALL successors from K current states
§ Choose best K of these to be the new current states

Or, K chosen randomly with 
a bias towards good ones



Beam search example (K=4)

8

6

7

8

9

7

7

7

6

8

9

9

8

7

9

3

5

10

10

9

X
X

X

X
9

8

9

9

10

9

9

10

X

X

X

X



Local beam search

§ Why is this different from K local searches in parallel?
§ The searches communicate! “Come over here, the grass is greener!”

§ What other well-known algorithm does this remind you of?
§ Evolution!



Genetic algorithms

§ Genetic algorithms use a natural selection metaphor
§ Resample K individuals at each step (selection) weighted by fitness function
§ Combine by pairwise crossover operators, plus mutation to give variety



Example: N-Queens

§ Does crossover make sense here?
§ What would mutation be?
§ What would a good fitness function be?



Local search in continuous spaces



Example: Siting airports in Romania
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Place 3 airports to minimize the sum of squared distances from each city to its nearest airport

Airport locations 
x = (x1,y1), (x2,y2), (x3,y3)

City locations (xc,yc)

Ca = cities closest to airport a

Objective: minimize
f(x) = Sa ScÎCa (xa - xc)2 + (ya - yc)2



Handling a continuous state/action space

1. Discretize it!
§ Define a grid with increment d , use any of the discrete algorithms

2. Choose random perturbations to the state
a. First-choice hill-climbing: keep trying until something improves the state
b. Simulated annealing 

3. Compute gradient of f(x) analytically



Finding extrema in continuous space

§ Gradient vector Ñf(x) = (¶f/¶x1, ¶f/¶y1, ¶f/¶x2, …)T

§ For the airports, f(x) = Sa ScÎCa (xa - xc)2 + (ya - yc)2

§ ¶f/¶x1 =ScÎC1 2(x1 - xc)
§ At an extremum, Ñf(x) = 0
§ Can sometimes solve in closed form: x1 = (ScÎC1 xc)/|C1|
§ Is this a local or global minimum of f?
§ Gradient descent: x ¬ x - aÑf(x)

§ Huge range of algorithms for finding extrema using gradients



§ Many configuration and optimization problems can be 
formulated as local search

§ General families of algorithms:
§ Hill-climbing, continuous optimization
§ Simulated annealing (and other stochastic methods)
§ Local beam search: multiple interaction searches
§ Genetic algorithms: break and recombine states

Many machine learning algorithms are local searches

Summary
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Outline
1. Propositional Logic I

§ Basic concepts of knowledge, logic, reasoning
§ Propositional logic: syntax and semantics, Pacworld example

2. Propositional logic II
§ Inference by theorem proving (briefly) and model checking
§ A Pac agent using propositional logic



Agents that know things

§ Agents acquire knowledge through perception, learning, language
§ Knowledge of the effects of actions (“transition model”)
§ Knowledge of how the world affects sensors (“sensor model”)
§ Knowledge of the current state of the world

§ Can keep track of a partially observable world
§ Can formulate plans to achieve goals
§ Can design and build gravitational wave detectors…..



LIGO



Knowledge, contd.
§ Knowledge base = set of sentences in a formal language
§ Declarative approach to building an agent (or other system): 

§ Tell it what it needs to know (or have it Learn the knowledge)
§ Then it can Ask itself what to do—answers should follow from the KB 

§ Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented 

§ A single inference algorithm can answer any answerable question

Knowledge base
Inference engine

Domain-specific facts

Generic code





Logic

§ Syntax: What sentences are allowed?
§ Semantics: 

§ What are the possible worlds?
§ Which sentences are true in which worlds? (i.e., definition of truth)

a1

a2 a3
Syntaxland Semanticsland



Different kinds of logic

§ Propositional logic
§ Syntax: P Ú (¬Q Ù R);        X1Û (Raining Þ ¬Sunny)
§ Possible world: {P=true,Q=true,R=false,S=true} or 1101
§ Semantics: a Ù b is true in a world iff is a true and b is true (etc.)

§ First-order logic
§ Syntax: "x $y P(x,y) Ù ¬Q(Joe,f(x)) Þ f(x)=f(y)
§ Possible world: Objects o1, o2, o3; P holds for <o1,o2>; Q holds for <o3>; 

f(o1)=o1; Joe=o3; etc.
§ Semantics: f(s) is true in a world if s=oj and f holds for oj; etc.



Different kinds of logic, contd.

§ Relational databases: 
§ Syntax: ground relational sentences, e.g., Sibling(Ali,Bo)
§ Possible worlds: (typed) objects and (typed) relations
§ Semantics: sentences in the DB are true, everything else is false

§ Cannot express disjunction, implication, universals, etc.
§ Query language (SQL etc.) typically some variant of first-order logic
§ Often augmented by first-order rule languages, e.g., Datalog

§ Knowledge graphs (roughly: relational DB + ontology of types and relations)
§ Google Knowledge Graph: 5 billion entities, 500 billion facts, >30% of queries
§ Facebook network: 2.93 billion people, trillions of posts, maybe quadrillions of facts



Inference: entailment

§ Entailment: a |= b (“a entails b” or “b follows from a”) iff
in every world where a is true, b is also true
§ I.e., the  a-worlds are a subset of the b-worlds [models(a) Í models(b)]

§ In the example, a2 |= a1

§ (Say a2 is ¬Q Ù R Ù S Ù W
a1 is ¬Q )

a1

a2



Inference: proofs

§ A proof is a demonstration of entailment between a and b
§ Sound algorithm: everything it claims to prove is in fact entailed
§ Complete algorithm: every that is entailed can be proved



Inference: proofs

§ Method 1: model-checking
§ For every possible world, if a is true make sure that is b true too
§ OK for propositional logic (finitely many worlds); not easy for first-order logic

§ Method 2: theorem-proving
§ Search for a sequence of proof steps (applications of inference rules) leading 

from a to b
§ E.g., from P and (P Þ Q), infer Q by Modus Ponens



Propositional logic syntax

§ Given: a set of proposition symbols {X1,X2,…, Xn} 
§ (we often add True and False for convenience)

§ Xi is a sentence
§ If a is a sentence then ¬a is a sentence
§ If a and b are sentences then a Ù b is a sentence
§ If a and b are sentences then a Ú b is a sentence
§ If a and b are sentences then aÞ b is a sentence
§ If a and b are sentences then aÛ b is a sentence
§ And p.s. there are no other sentences!



Propositional logic semantics

§ Let m be a model assigning true or false to {X1,X2,…, Xn} 
§ If a is a symbol then its truth value is given in m
§ ¬a is true in m iff a is false in m
§ a Ù b is true in m iff a is true in m and b is true in m
§ a Ú b is true in m iff a is true in m or b is true in m
§ aÞ b is true in m iff a is false in m or b is true in m
§ aÛ b is true in m iff aÞ b is true in m and bÞ a is true in m



Example: Partially observable Pacman
§ Pacman knows the map but perceives just wall/gap to NSEW
§ Formulation: what variables do we need?

§ Wall locations
§ Wall_0,0 there is a wall at [0,0]
§ Wall_0,1 there is a wall at [0,1], etc. (N symbols for N locations)

§ Percepts
§ Blocked_W (blocked by wall to my West) etc.
§ Blocked_W_0 (blocked by wall to my West at time 0) etc. (4T symbols for T time steps)

§ Actions
§ W_0 (Pacman moves West at time 0), E_0 etc. (4T symbols)

§ Pacman’s location
§ At_0,0_0 (Pacman is at [0,0] at time 0), At_0,1_0 etc. (NT symbols)



How many possible worlds?

§ N locations, T time steps => N + 4T + 4T + NT = O(NT) variables
§ O(2NT) possible worlds! 
§ N=200, T=400 => ~1024000 worlds
§ Each world is a complete “history”

§ But most of them are pretty weird!



Pacman’s knowledge base: Map

§ Pacman knows where the walls are:
§ Wall_0,0 Ù Wall_0,1 Ù Wall_0,2 Ù Wall_0,3 Ù Wall_0,4 Ù Wall_1,4 Ù …

§ Pacman knows where the walls aren’t!
§ ¬Wall_1,1 Ù ¬Wall_1,2 Ù ¬Wall_1,3 Ù ¬Wall_2,1 Ù ¬Wall_2,2 Ù …



Pacman’s knowledge base: Initial state

§ Pacman doesn’t know where he is
§ But he knows he’s somewhere!

§ At_1,1_0 Ú At_1,2_0 Ú At_1,3_0 Ú At_2,1_0 Ú …



Pacman’s knowledge base: Sensor model

§ State facts about how Pacman’s percepts arise…
§ <Percept variable at t> Û <some condition on world at t>

§ Pacman perceives a wall to the West at time t
if and only if he is in x,y and there is a wall at x-1,y
§ Blocked_W_0 Û ((At_1,1_0 Ù Wall_0,1) v 

(At_1,2_0 Ù Wall_0,2) v 
(At_1,3_0 Ù Wall_0,3) v …. )

§ 4T sentences, each of size O(N)
§ Note: these are valid for any map



Pacman’s knowledge base: Transition model

§ How does each state variable at each time gets its value?
§ Here we care about location variables, e.g., At_3,3_17

§ A state variable X gets its value according to a successor-state axiom
§ X_t Û [X_t-1 Ù ¬(some action_t-1 made it false)] v

[¬X_t-1 Ù (some action_t-1 made it true)]

§ For Pacman location:
§ At_3,3_17 Û [At_3,3_16 Ù ¬((¬Wall_3,4 Ù N_16) v (¬Wall_4,3 Ù E_16) v …)]

v  [¬At_3,3_16 Ù ((At_3,2_16 Ù ¬Wall_3,3 Ù N_16) v 
(At_2,3_16 Ù ¬Wall_3,3 Ù N_16) v …)]



How many sentences?

§ Vast majority of KB occupied by O(NT) transition model sentences
§ Each about 10 lines of text
§ N=200, T=400 => ~800,000 lines of text, or 20,000 pages

§ This is because propositional logic has limited expressive power
§ Are we really going to write 20,000 pages of logic sentences???
§ No, but your code will generate all those sentences!
§ In first-order logic, we need O(1) transition model sentences
§ (State-space search uses atomic states: how do we keep the 

transition model representation small???)



Some reasoning tasks

§ Localization with a map and local sensing:
§ Given an initial KB, plus a sequence of percepts and actions, where am I?

§ Mapping with a location sensor:
§ Given an initial KB, plus a sequence of percepts and actions, what is the map?

§ Simultaneous localization and mapping:
§ Given …, where am I and what is the map?

§ Planning:
§ Given …, what action sequence is guaranteed to reach the goal?

§ ALL OF THESE USE THE SAME KB AND THE SAME ALGORITHM!!





Summary

§ One possible agent architecture: knowledge + inference
§ Logics provide a formal way to encode knowledge

§ A logic is defined by: syntax, set of possible worlds, truth condition

§ A simple KB for Pacman covers the initial state, sensor model, and 
transition model

§ Logical inference computes entailment relations among sentences, 
enabling a wide range of tasks to be solved


