Announcements

- Project 3 is due **Tuesday, February 28, 11:59 PM PT**
- HW3 is due **Friday, February 17, 11:59 PM PT**
CS 188: Artificial Intelligence
Expectimax, Monte Carlo Tree Search

Spring 2023
University of California, Berkeley

[These slides were created by Dan Klein, Pieter Abbeel for CS188 Intro to AI at UC Berkeley (ai.berkeley.edu).]
Uncertain Outcomes
Worst-Case vs. Average Case

Idea: Uncertain outcomes controlled by chance, not an adversary!
Expectimax Search

- Why wouldn’t we know what the result of an action will be?
 - Explicit randomness: rolling dice
 - Unpredictable opponents: the ghosts respond randomly
 - Actions can fail: when moving a robot, wheels might slip

- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes

- Expectimax search: compute the average score under optimal play
 - Max nodes as in minimax search
 - Chance nodes are like min nodes but the outcome is uncertain
 - Calculate their expected utilities
 - I.e. take weighted average (expectation) of children

- Later, we’ll learn how to formalize the underlying uncertain-result problems as Markov Decision Processes
Expectimax Pseudocode

```python
def value(state):
    if the state is a terminal state: return the state’s utility
    if the next agent is MAX: return max-value(state)
    if the next agent is EXP: return exp-value(state)

def max-value(state):
    initialize v = -∞
    for each successor of state:
        v = max(v, value(successor))
    return v

def exp-value(state):
    initialize v = 0
    for each successor of state:
        p = probability(successor)
        v += p * value(successor)
    return v
```
def exp-value(state):
 initialize v = 0
 for each successor of state:
 p = probability(successor)
 v += p * value(successor)
 return v

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10
Expectimax Example
Expectimax Pruning?
Depth-Limited Expectimax

Estimate of true expectimax value (which would require a lot of work to compute)
A random variable represents an event whose outcome is unknown
A probability distribution is an assignment of weights to outcomes

Example: Traffic on freeway
- Random variable: T = whether there’s traffic
- Outcomes: T in {none, light, heavy}
- Distribution: \(P(T=\text{none}) = 0.25, P(T=\text{light}) = 0.50, P(T=\text{heavy}) = 0.25 \)

Some laws of probability (more later):
- Probabilities are always non-negative
- Probabilities over all possible outcomes sum to one

As we get more evidence, probabilities may change:
- \(P(T=\text{heavy}) = 0.25, P(T=\text{heavy} \mid \text{Hour=8am}) = 0.60 \)
- We’ll talk about methods for reasoning and updating probabilities later
The expected value of a function of a random variable is the average, weighted by the probability distribution over outcomes.

Example: How long to get to the airport?

- Time: 20 min \times 0.25 + 30 min \times 0.50 + 60 min \times 0.25
- \rightarrow 35 min
In expectimax search, we have a probabilistic model of how the opponent (or environment) will behave in any state:

- Model could be a simple uniform distribution (roll a die)
- Model could be sophisticated and require a great deal of computation
- We have a chance node for any outcome out of our control: opponent or environment
- The model might say that adversarial actions are likely!

For now, assume each chance node magically comes along with probabilities that specify the distribution over its outcomes.

Having a probabilistic belief about another agent’s action does not mean that the agent is flipping any coins!
Quiz: Informed Probabilities

- Let’s say you know that your opponent is actually running a depth 2 minimax, using the result 80% of the time, and moving randomly otherwise
- Question: What tree search should you use?

- Answer: Expectimax!
 - To figure out EACH chance node’s probabilities, you have to run a simulation of your opponent
 - This kind of thing gets very slow very quickly
 - Even worse if you have to simulate your opponent simulating you...
 - ... except for minimax, which has the nice property that it all collapses into one game tree
Modeling Assumptions
The Dangers of Optimism and Pessimism

Dangerous Optimism
Assuming chance when the world is adversarial

Dangerous Pessimism
Assuming the worst case when it’s not likely
Assumptions vs. Reality

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman

Results from playing 5 games

<table>
<thead>
<tr>
<th></th>
<th>Adversarial Ghost</th>
<th>Random Ghost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimax Pacman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expectimax Pacman</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Demos: world assumptions (L7D3,4,5,6)]
Assumptions vs. Reality

Results from playing 5 games

<table>
<thead>
<tr>
<th></th>
<th>Adversarial Ghost</th>
<th>Random Ghost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimax Pacman</td>
<td>Won 5/5</td>
<td>Won 5/5</td>
</tr>
<tr>
<td></td>
<td>Avg. Score: 483</td>
<td>Avg. Score: 493</td>
</tr>
<tr>
<td>Expectimax Pacman</td>
<td>Won 1/5</td>
<td>Won 5/5</td>
</tr>
<tr>
<td></td>
<td>Avg. Score: -303</td>
<td>Avg. Score: 503</td>
</tr>
</tbody>
</table>

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman

[Demos: world assumptions (L7D3,4,5,6)]
Other Game Types
Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
 - Environment is an extra “random agent” player that moves after each min/max agent
 - Each node computes the appropriate combination of its children
Example: Backgammon

- Dice rolls increase b: 21 possible rolls with 2 dice
 - Backgammon \approx 20 legal moves
 - Depth 2 = $20 \times (21 \times 20)^3 = 1.2 \times 10^9$

- As depth increases, probability of reaching a given search node shrinks
 - So usefulness of search is diminished
 - So limiting depth is less damaging
 - But pruning is trickier...

- Historic AI: TDGammon uses depth-2 search + very good evaluation function + reinforcement learning: world-champion level play

- 1st AI world champion in any game!
Multi-Agent Utilities

- What if the game is not zero-sum, or has multiple players?

- Generalization of minimax:
 - Terminals have utility tuples
 - Node values are also utility tuples
 - Each player maximizes its own component
 - Can give rise to cooperation and competition dynamically...

```
1,6,6  7,1,2  6,1,2  7,2,1  5,1,7  1,5,2  7,7,1  5,2,5
```
Monte Carlo Tree Search
Monte Carlo Tree Search

- Methods based on alpha-beta search assume a fixed horizon
 - Pretty hopeless for Go, with $b > 300$
- MCTS combines two important ideas:
 - *Evaluation by rollouts* – play multiple games to termination from a state s (using a simple, fast rollout policy) and count wins and losses
 - *Selective search* – explore parts of the tree that will help improve the decision at the root, regardless of depth
Rollouts

- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result
- Fraction of wins correlates with the true value of the position!
- Having a “better” rollout policy helps
MCTS Version 0

- Do N rollouts from each child of the root, record fraction of wins
- Pick the move that gives the best outcome by this metric
MCTS Version 0

- Do N rollouts from each child of the root, record fraction of wins
- Pick the move that gives the best outcome by this metric
Allocate rollouts to more promising nodes
Allocate rollouts to more promising nodes
MCTS Version 1.0

- Allocate rollouts to more promising nodes
- Allocate rollouts to more uncertain nodes
UCB heuristics

- UCB1 formula combines “promising” and “uncertain”:

$$UCB1(n) = \frac{U(n)}{N(n)} + C \times \sqrt{\frac{\log N(PARENT(n))}{N(n)}}$$

- \(N(n) = \text{number of rollouts from node } n\)
- \(U(n) = \text{total utility of rollouts (e.g., # wins) for Player(Parent(n))}\)
- A provably not terrible heuristic for \textit{bandit problems}:
 - (which are not the same as the problem we face here!)
MCTS Version 2.0: UCT

- Repeat until out of time:
 - Given the current search tree, recursively apply UCB to choose a path down to a leaf (not fully expanded) node n
 - Add a new child c to n and run a rollout from c
 - Update the win counts from c back up to the root
- Choose the action leading to the child with highest N
UCT Example
Why is there no min or max?

- “Value” of a node, $U(n)/N(n)$, is a weighted sum of child values!

- Idea: as $N \rightarrow \infty$, the vast majority of rollouts are concentrated in the best child(ren), so weighted average \rightarrow max/min

- Theorem: as $N \rightarrow \infty$ UCT selects the minimax move
 - (but N never approaches infinity!)
Summary

- Games require decisions when optimality is impossible
 - Bounded-depth search and approximate evaluation functions
- Games force efficient use of computation
 - Alpha-beta pruning, MCTS
- Game playing has produced important research ideas
 - Reinforcement learning (checkers)
 - Iterative deepening (chess)
 - Rational metareasoning (Othello)
 - Monte Carlo tree search (chess, Go)
 - Solution methods for partial-information games in economics (poker)
- Video games present much greater challenges – lots to do!
 - $b = 10^{500}$, $|S| = 10^{4000}$, $m = 10,000$, partially observable, often > 2 players
Next Time: MDPs!