Announcements

- Project 3 is due Tuesday, February 28, 11:59 PM PT
- HW3 is due **Friday, February 17**, 11:59 PM PT

CS 188: Artificial Intelligence

Expectimax, Monte Carlo Tree Search

Spring 2023

University of California, Berkeley

[These slides were created by Dan Klein, Pieter Abbeel for CS188 Intro to AI at UC Berkeley (ai.berkeley.edu).]

Uncertain Outcomes

Worst-Case vs. Average Case

Idea: Uncertain outcomes controlled by chance, not an adversary!

Expectimax Search

- Why wouldn't we know what the result of an action will be?
 - Explicit randomness: rolling dice
 - Unpredictable opponents: the ghosts respond randomly
 - Actions can fail: when moving a robot, wheels might slip
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal play
 - Max nodes as in minimax search
 - Chance nodes are like min nodes but the outcome is uncertain
 - Calculate their expected utilities
 - I.e. take weighted average (expectation) of children
- Later, we'll learn how to formalize the underlying uncertainresult problems as Markov Decision Processes

Expectimax Pseudocode

```
def value(state):
                      if the state is a terminal state: return the state's utility
                      if the next agent is MAX: return max-value(state)
                     if the next agent is EXP: return exp-value(state)
def max-value(state):
                                                            def exp-value(state):
    initialize v = -\infty
                                                                initialize v = 0
   for each successor of state:
                                                                for each successor of state:
       v = max(v, value(successor))
                                                                    p = probability(successor)
                                                                    v += p * value(successor)
   return v
                                                                return v
```

Expectimax Pseudocode

```
def exp-value(state):
    initialize v = 0
    for each successor of state:
        p = probability(successor)
        v += p * value(successor)
    return v
```


$$v = (1/2)(8) + (1/3)(24) + (1/6)(-12) = 10$$

Expectimax Example

Expectimax Pruning?

Depth-Limited Expectimax

Probabilities

Reminder: Probabilities

- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes
- Example: Traffic on freeway
 - Random variable: T = whether there's traffic
 - Outcomes: T in {none, light, heavy}
 - Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25
- Some laws of probability (more later):
 - Probabilities are always non-negative
 - Probabilities over all possible outcomes sum to one
- As we get more evidence, probabilities may change:
 - P(T=heavy) = 0.25, P(T=heavy | Hour=8am) = 0.60
 - We'll talk about methods for reasoning and updating probabilities later

0.25

0.50

0.25

Reminder: Expectations

 The expected value of a function of a random variable is the average, weighted by the probability distribution over outcomes

• Example: How long to get to the airport?

0.25

Time:

Probability:

20 min

+

30 min

.

0.50

60 min

X

0.25

35 min

What Probabilities to Use?

In expectimax search, we have a probabilistic not of how the opponent (or environment) will behave any state

Model could be a simple uniform distribution (roll a die)

 Model could be sophisticated and require a great deal of computation

We have a chance node for any outcome out of our contol: opponent or environment

The model might say that adversarial actions are likely!

 For now, assume each chance node magically comes along with probabilities that specify the distribution over its outcomes

Having a probabilistic belief about another agent's action does not mean that the agent is flipping any coins!

Quiz: Informed Probabilities

- Let's say you know that your opponent is actually running a depth 2 minimax, using the result 80% of the time, and moving randomly otherwise
- Question: What tree search should you use?

Answer: Expectimax!

- To figure out EACH chance node's probabilities, you have to run a simulation of your opponent
- This kind of thing gets very slow very quickly
- Even worse if you have to simulate your opponent simulating you...
- ... except for minimax, which has the nice property that it all collapses into one game tree

Modeling Assumptions

The Dangers of Optimism and Pessimism

Dangerous Optimism

Assuming chance when the world is adversarial

Dangerous Pessimism

Assuming the worst case when it's not likely

Assumptions vs. Reality

	Adversarial Ghost	Random Ghost
Minimax Pacman		
Expectimax Pacman		

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

Assumptions vs. Reality

	Adversarial Ghost	Random Ghost
Minimax	Won 5/5	Won 5/5
Pacman	Avg. Score: 483	Avg. Score: 493
Expectimax	Won 1/5	Won 5/5
Pacman	Avg. Score: -303	Avg. Score: 503

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

[Demos: world assumptions (L7D3,4,5,6)]

Other Game Types

Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
 - Environment is an extra "random agent" player that moves after each min/max agent
 - Each node
 computes the
 appropriate
 combination of its
 children

Example: Backgammon

- Dice rolls increase *b*: 21 possible rolls with 2 dice
 - Backgammon ≈ 20 legal moves
 - Depth $2 = 20 \times (21 \times 20)^3 = 1.2 \times 10^9$
- As depth increases, probability of reaching a given search node shrinks
 - So usefulness of search is diminished
 - So limiting depth is less damaging
 - But pruning is trickier...
- Historic AI: TDGammon uses depth-2 search + very good evaluation function + reinforcement learning: world-champion level play
- 1st Al world champion in any game!

What if the game is not zero-sum, or has multiple players?

Generalization of minimax:

- Terminals have utility tuples
- Node values are also utility tuples
- Each player maximizes its own component
- Can give rise to cooperation and competition dynamically...

Monte Carlo Tree Search

Monte Carlo Tree Search

- Methods based on alpha-beta search assume a fixed horizon
 - Pretty hopeless for Go, with b > 300
- MCTS combines two important ideas:
 - **Evaluation by rollouts** play multiple games to termination from a state s (using a simple, fast rollout policy) and count wins and losses
 - **Selective search** explore parts of the tree that will help improve the decision at the root, regardless of depth

Rollouts

- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result
- Fraction of wins correlates with the true value of the position!
- Having a "better" rollout policy helps

"Move 37"

MCTS Version 0

- Do N rollouts from each child of the root, record fraction of wins
- Pick the move that gives the best outcome by this metric

MCTS Version 0

- Do N rollouts from each child of the root, record fraction of wins
- Pick the move that gives the best outcome by this metric

MCTS Version 0.9

• Allocate rollouts to more promising nodes

MCTS Version 0.9

• Allocate rollouts to more promising nodes

MCTS Version 1.0

- Allocate rollouts to more promising nodes
- Allocate rollouts to more uncertain nodes

UCB heuristics

UCB1 formula combines "promising" and "uncertain":

$$UCB1(n) = \frac{U(n)}{N(n)} + C \times \sqrt{\frac{\log N(PARENT(n))}{N(n)}}$$

- N(n) = number of rollouts from node n
- U(n) = total utility of rollouts (e.g., # wins) for Player(Parent(n))
- A provably not terrible heuristic for bandit problems
 - (which are not the same as the problem we face here!)

MCTS Version 2.0: UCT

- Repeat until out of time:
 - Given the current search tree, recursively apply UCB to choose a path down to a leaf (not fully expanded) node n
 - Add a new child c to n and run a rollout from c
 - Update the win counts from c back up to the root
- Choose the action leading to the child with highest N

UCT Example

Why is there no min or max?

- "Value" of a node, U(n)/N(n), is a weighted **sum** of child values!
- Idea: as $N \to \infty$, the vast majority of rollouts are concentrated in the best child(ren), so weighted average \to max/min
- Theorem: as $N \to \infty$ UCT selects the minimax move
 - (but N never approaches infinity!)

Summary

- Games require decisions when optimality is impossible
 - Bounded-depth search and approximate evaluation functions
- Games force efficient use of computation
 - Alpha-beta pruning, MCTS
- Game playing has produced important research ideas
 - Reinforcement learning (checkers)
 - Iterative deepening (chess)
 - Rational metareasoning (Othello)
 - Monte Carlo tree search (chess, Go)
 - Solution methods for partial-information games in economics (poker)
- Video games present much greater challenges lots to do!
 - $b = 10^{500}$, $|S| = 10^{4000}$, m = 10,000, partially observable, often > 2 players

Next Time: MDPs!