
Announcements

▪ John Oliver “Last Week Tonight” on AI, ChatGPT, etc. (NSFW)

▪ Latin American and Caribbean states announce support for a treaty 
banning some types of autonomous weapons and regulating others

▪ United States, China, and many other countries announce support for a 
voluntary code of conduct on responsible use of autonomous weapons

▪ Midterm next Monday (March 6) 8-10pm (more details++ on ed)

https://youtu.be/Sqa8Zo2XWc4
https://www.rree.go.cr/?sec=exterior&cat=conferencia
https://www.state.gov/building-consensus-on-the-u-s-framework-for-a-political-declaration-on-the-responsible-military-use-of-artificial-intelligence-and-autonomy/
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Reinforcement learning

▪ What if the MDP is initially unknown? Lots of things change!

▪ Exploration: you have to try unknown actions to get information

▪ Exploitation: eventually, you have to use what you know

▪ Regret: early on, you inevitably “make mistakes” and lose reward

▪ Sampling: you may need to repeat many times to get good estimates

▪ Generalization: what you learn in one state may apply to others too
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Reinforcement Learning

▪ Basic idea:
▪ Learn how to maximize expected rewards based on 

observed samples of transitions

▪ Not unlike the basic problem faced by all living things

Environment

Agent

Actions: a
State: s

Reward: r



Example: Samuel’s checker player (1956-67)



Example: AlphaGo (2016)



The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]



Reinforcement Learning

▪ Still assume a Markov decision process (MDP):

▪ A set of states s  S

▪ A set of actions (per state) A(s)

▪ A transition model T(s,a,s’)

▪ A reward function R(s,a,s’)

▪ Still looking for a policy (s)

▪ New twist: don’t know T or R

▪ I.e. we don’t know which states are good or what the actions do

▪ Must explore new states and actions  -- to boldly go where no Pacman has gone before



Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning



Approaches to reinforcement learning

1. Model-based: Learn the model, solve it, execute the solution

2. Learn values from experiences, use to make decisions

a. Direct evaluation

b. Temporal difference learning

c. Q-learning

3. Learn policies directly (see AIMA4e Section 22.5)



Passive vs Active Reinforcement Learning



Model-Based RL



Model-Based Learning

▪ Model-Based Idea:
▪ Learn an approximate model based on experiences
▪ Solve for values as if the learned model were correct

▪ Step 1: Learn empirical MDP model
▪ Count outcomes s’ for each s, a
▪ Directly estimate each entry in T(s,a,s’) from counts
▪ Discover each R(s,a,s’) when we experience the transition

▪ Step 2: Solve the learned MDP
▪ Use, e.g., value or policy iteration, as before



Example: Model-Based Learning

Input Policy 

Assume:  = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

T(s,a,s’).
T(B, east, C) = 1.00
P(C, east, D) = 0.75
P(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…

T(s,a,s’)

R(s,a,s’)



Pros and cons

▪ Pro:

▪ Makes efficient use of experiences (low sample complexity)

▪ Con:

▪ May not scale to large state spaces

▪ Learns model one state-action pair at a time (but this is fixable)

▪ Cannot solve MDP for very large |S| (also somewhat fixable)

▪ Much harder when the environment is partially observable



Model-Free Learning



Basic idea of model-free methods

▪ To approximate expectations with respect to a distribution, you 
can either

▪ Estimate the distribution from samples, compute an expectation

▪ Or, bypass the distribution and estimate the expectation from samples 
directly



Example: Expected Age

Goal: Compute expected age of cs188 students

“Model Based”: estimate P(A): “Model Free”: estimate expectation

Without P(A), instead collect samples [a1, a2, … aN]

P^(A=a) = Na/N

E[A]  a P
 ̂
(a)  a

Why does this 
work?  Because 
samples appear 
with the right 
frequencies.

Why does this 
work?  Because 
eventually you 
learn the right 

model.

Known P(A)

E[A] = a P(a)  a  =  0.35 x 20 + …

E[A]  1/N i ai



Passive Reinforcement Learning

▪ Simplified task: policy evaluation
▪ Input: a fixed policy (s)

▪ You don’t know T and R

▪ Goal: learn the state values V(s)



Direct evaluation

▪ Goal: Estimate V(s), i.e., expected total discounted 
reward from s onwards

▪ Idea: 

▪ Use returns, the actual sums of discounted rewards from s

▪ Average over multiple trials and visits to s

▪ This is called direct evaluation (or direct utility 
estimation)



Example: Direct Estimation

Input Policy 

Assume:  = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

A

B C D

E

+8 +4 +10

-10

-2



Problems with Direct Estimation

▪ What’s good about direct estimation?

▪ It’s easy to understand

▪ It doesn’t require any knowledge of T and R

▪ It converges to the right answer in the limit

▪ What’s bad about it?

▪ Each state must be learned separately (fixable)

▪ It ignores information about state connections

▪ So, it takes a long time to learn

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C 
under this policy, how can 
their values be different?

E.g., B=at home, study hard
E=at library, study hard

C=know material, go to exam 



Temporal difference (TD) learning



TD as approximate Bellman update

▪ Given a fixed policy, the value of a state is an 
expectation over next-state values:
▪ V(s) = s’ T(s,(s),s’) [R(s,(s),s’) + γV(s’) ]

▪ Idea 1: Use actual samples to estimate the expectation:

▪ sample1 = R(s,(s),s1’) + γV(s1’) 
▪ sample2 = R(s,(s),s2’) + γV(s2’)
▪ …
▪ sampleN = R(s,(s),sN’) + γV(sN’)
▪ V(s)  1/N i samplei



TD as approximate Bellman update

▪ Idea 2: Update value of s after each transition s,a,s’,r :

▪ Update V ([3,1]) based on R([3,1],up,[3,2]) and γV([3,2])
▪ Update V ([3,2]) based on R([3,2],up,[3,3]) and γV([3,3])
▪ Update V ([3,3]) based on R([3,3],right,[4,3]) and γV([4,3])



TD as approximate Bellman update

▪ Idea 3: Update values by maintaining a running average



Running averages

▪ How do you compute the average of 1, 4, 7?

▪ Method 1: add them up and divide by N

▪ 1+4+7 = 12

▪ average = 12/N = 12/3 = 4

▪ Method 2: keep a running average n and a running count n

▪ n=0   0=0

▪ n=1   1 =  (0  0 + x1)/1 =  ( 0  0 + 1)/1   =   1

▪ n=2   2 =  (1  1 + x2)/2 =  (1  1 + 4)/2   =   2.5

▪ n=3   3 =  (2  2 + x3)/3 =  (2  2.5 + 7)/3   =   4

▪ General formula: n =  ((n-1)  n-1 + xn)/n

▪ = [(n-1)/n]n-1 + [1/n] xn (weighted average of old mean, new sample)



Running averages contd.

▪ What if we use a weighted average with a fixed weight?

▪ n = (1-)n-1 +  xn

▪ n=1   1 =  x1

▪ n=2   2 =  (1-)  1 + x2  =  (1-)  x1 + x2 

▪ n=3   3 =  (1-)  2 + x3   =  (1-)2  x1 + (1-)x2 + x3 

▪ n=4   4 =  (1-)  3 + x4   =  (1-)3  x1 + (1-)2x2 + (1-)x3 + x4

▪ I.e., exponential forgetting of old values

▪ n is a convex combination of sample values (weights sum to 1)

▪ E[n] is a convex combination of E[Xi] values, hence unbiased 



TD as approximate Bellman update

▪ Idea 3: Update values by maintaining a running average

▪ sample = R(s,(s),s’) + γV (s’) 
▪ V(s)  (1-)  V(s)  +    sample
▪ V(s)  V(s)  +    [sample - V(s)]
▪ This is the temporal difference learning rule
▪ [sample - V(s)] is the “TD error”
▪  is the learning rate
▪ I.e., observe a sample, move V(s) a little bit to make it 

more consistent with its neighbor V (s’) 



Example: Temporal Difference Learning

Assume:  = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

V(s)  (1-) V(s)  +    [R(s,(s),s’) + γV (s’)]



Problems with TD Value Learning

▪ TD value learning is a model-free way to do policy evaluation, mimicking 
Bellman updates with running sample averages

▪ But we can’t use the value function, or improve the policy, without a 
transition model to do one-step greedy expectimax!

▪ (Will see later how to use it with a known model in large state spaces)



Q-learning as approximate Q-iteration

▪ Recall the definition of Q values:
▪ Q*(s,a) = expected return from doing a in s and then behaving optimally 

thereafter; and *(s) = maxaQ*(s,a) 

▪ Bellman equation for Q values:
▪ Q*(s,a) = s’ T(s,a,s’)[R(s,a,s’) + γ maxa’ Q*(s’,a’) ]

▪ Approximate Bellman update for Q values:
▪ Q(s,a)  (1-)  Q(s,a)  +    [R(s,a,s’) + γmaxa’Q (s’,a’) ]

▪ We obtain a policy from learned Q(s,a), with no model!
▪ (No free lunch: Q(s,a) table is |A| times bigger than V(s) table)



Q-Learning

▪ Learn Q(s,a) values as you go

▪ Receive a sample (s,a,s’,r)

▪ Consider your old estimate: Q(s,a)

▪ Consider your new sample estimate:

sample = R(s,a,s’) + γ maxa’ Q(s’,a’) 

▪ Incorporate the new estimate into a running average:

Q(s,a)  (1-) Q(s,a) +    [sample]

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]



Q-Learning Properties

▪ Amazing result: Q-learning converges to optimal 
policy -- even if samples are generated from a 
suboptimal policy!

▪ This is called off-policy learning

▪ Caveats:

▪ You have to explore enough (eventually try every 
state/action pair infinitely often)

▪ You have to decrease the learning rate appropriately

▪ Technical requirements: t (t) =  , t 
2(t) < 

▪ Satisfied by: (t) = 1/t or (better)(t) = K/(K+t)



Summary

▪ RL solves MDPs via direct experience of transitions and rewards

▪ There are several schemes:

▪ Learn the MDP model and solve it 

▪ Learn V directly from sums of rewards, or by TD local adjustments

▪ Still need a model to make decisions by lookahead

▪ Learn Q by local Q-learning adjustments, use it directly to pick actions

▪ (and about 100 other variations)

▪ Big missing pieces: 

▪ How to explore without too much regret?

▪ How to scale this up to Tetris (1060), Go (10172), StarCraft (|A|=1026)?


