
Announcements

▪ Midterm next Monday (March 6) 8-10pm (more details++ on ed)

How to beat a superhuman Go program

White: Kellin Pelrine (~2300)

Black: JBXKata005 (~5200)

9-stone handicap

Q-learning as approximate Q-iteration

▪ Recall the definition of Q values:
▪ Q*(s,a) = expected return from doing a in s and then behaving optimally

V(s) = maxaQ*(s,a) and *(s) = argmaxaQ*(s,a)

▪ Bellman equation for Q values:
▪ Q*(s,a) = s’ T(s,a,s’)[R(s,a,s’) + γ maxa’ Q*(s’,a’)]

▪ Approximate Bellman update for Q values:
▪ Q(s,a) (1-) Q(s,a) + [R(s,a,s’) + γmaxa’Q (s’,a’)]

▪ We obtain a policy from learned Q(s,a), with no model!
▪ (No free lunch: Q(s,a) table is |A| times bigger than V(s) table)

Q-Learning

▪ Learn Q(s,a) values as you go

▪ Receive a sample (s,a,s’,r)

▪ Consider your old estimate: Q(s,a)

▪ Consider your new sample estimate:

sample = R(s,a,s’) + γ maxa’ Q(s’,a’)

▪ Incorporate the new estimate into a running average:

Q(s,a) (1-) Q(s,a) + [sample]

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]

Q-Learning Properties

▪ Amazing result: Q-learning converges to optimal
policy -- even if samples are generated from a
suboptimal policy!

▪ This is called off-policy learning

▪ Caveats:

▪ You have to explore enough (eventually try every
state/action pair infinitely often)

▪ You have to decrease the learning rate appropriately

▪ Technical requirements: t (t) = , t
2(t) <

▪ Satisfied by: (t) = 1/t or (better)(t) = K/(K+t)

Summary

▪ RL solves MDPs via direct experience of transitions and rewards

▪ There are several schemes:

▪ Learn the MDP model and solve it

▪ Learn V directly from sums of rewards, or by TD local adjustments

▪ Still need a model to make decisions by lookahead

▪ Learn Q by local Q-learning adjustments, use it directly to pick actions

▪ (and about 100 other variations)

▪ Big missing pieces:

▪ How to explore without too much regret?

▪ How to scale this up to Tetris (1060), Go (10172), StarCraft (|A|=1026)?

CS 188: Artificial Intelligence
Reinforcement Learning II

Instructors: Stuart Russell and Peyrin Kao

University of California, Berkeley

Reminder: Reinforcement Learning

▪ RL solves MDPs via direct experience of transitions and rewards

▪ There are several schemes:

▪ Learn the MDP model and solve it

▪ Learn V directly from sums of rewards, or by TD local adjustments

▪ Still need a model to make decisions by lookahead

▪ Learn Q by local Q-learning adjustments, use it directly to pick actions

▪ (and about 100 other variations)

▪ Big missing pieces:

▪ How to explore without too much regret?

▪ How to scale this up to Tetris (1060), Go (10172), StarCraft (|A|=1026)?

Exploration vs. Exploitation

Exploration vs exploitation

▪ Exploration: try new things

▪ Exploitation: do what’s best given what you’ve learned so far

▪ Key point: pure exploitation often gets stuck in a rut and never
finds an optimal policy!

10

Exploration method 1: -greedy

▪ -greedy exploration
▪ Every time step, flip a biased coin

▪ With (small) probability , act randomly

▪ With (large) probability 1-, act on current policy

▪ Properties of -greedy exploration
▪ Every s,a pair is tried infinitely often

▪ Does a lot of stupid things
▪ Jumping off a cliff lots of times to make sure it hurts

▪ Keeps doing stupid things for ever
▪ Decay towards 0

Sensible exploration: Bandits

▪ Which one-armed bandit to try next?

▪ Most people would choose C > B > A > D

▪ Basic intuition: higher mean is better; more uncertainty is better

▪ Gittins (1979): rank arms by an index that depends only on the arm itself
12

Tries: 1000

Winnings: 900

Tries: 100

Winnings: 90

Tries: 5

Winnings: 4

Tries: 100

Winnings: 0
A B C D

Exploration Functions

▪ Exploration functions implement this tradeoff
▪ Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g., f(u,n) = u + k/n

▪ Regular Q-update:

▪ Q(s,a) (1-) Q(s,a) + [R(s,a,s’) + γ maxaQ (s’,a)]

▪ Modified Q-update:

▪ Q(s,a) (1-) Q(s,a) + [R(s,a,s’) + γ maxa f(Q (s’,a),n(s’,a’))]

▪ Note: this propagates the “bonus” back to states that lead to
unknown states as well!

Optimality and exploration

14

fixed -greedy

decay -greedy

exploration function
total reward

per trial
optimal

number of trials

regret

Regret

▪ Regret measures the total
cost of your youthful errors
made while exploring and
learning instead of
behaving optimally

▪ Minimizing regret goes
beyond learning to be
optimal – it requires
optimally learning to be
optimal

Approximate Q-Learning

Generalizing Across States

▪ Basic Q-Learning keeps a table of all Q-values

▪ In realistic situations, we cannot possibly learn
about every single state!
▪ Too many states to visit them all in training

▪ Too many states to hold the Q-tables in memory

▪ Instead, we want to generalize:
▪ Learn about some small number of training states from

experience

▪ Generalize that experience to new, similar situations

▪ Can we apply some machine learning tools to do this?

[demo – RL pacman]

Example: Pacman

Let’s say we discover
through experience

that this state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

Feature-Based Representations

▪ Describe a state using a vector of features
▪ Features are functions from states to real

numbers (often 0/1) that capture important
properties of the state

▪ Example features:
▪ Distance to closest ghost fGST

▪ Distance to closest dot
▪ Number of ghosts
▪ 1 / (distance to closest dot) fDOT

▪ Is Pacman in a tunnel? (0/1)
▪ …… etc.

▪ Can also describe a q-state (s, a) with features
(e.g., action moves closer to food)

Linear Value Functions

▪ We can express V and Q (approximately) as weighted linear
functions of feature values:
▪ Vw(s) = w1f1(s) + w2f2(s) + … + wnfn(s)

▪ Qw(s,a) = w1f1(s,a) + w2f2(s,a) + … + wnfn(s,a)

▪ With the wrong features, the best possible approximation may be terrible!

▪ But in practice we can compress a value function for chess (1043 states) down to
about 30 weights and get decent play!!!

Updating a linear value function

▪ Original Q-learning rule tries to reduce prediction error at s,a:
▪ Q(s,a) Q(s,a) + [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a)]

▪ Instead, we update the weights to try to reduce the error at s,a:

▪ wi wi + [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a)] Qw(s,a)/wi

= wi + [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a)] fi(s,a)

▪ Qualitative justification:

▪ Pleasant surprise: increase weights on +ve features, decrease on –ve ones

▪ Unpleasant surprise: decrease weights on +ve features, increase on –ve ones

21

Example: Q-Pacman

Q(s,a) = 4.0 fDOT(s,a) – 1.0 fGST(s,a)

Q(s,a) = 3.0 fDOT(s,a) – 3.0 fGST(s,a)

s’s
fDOT(s,NORTH) = 0.5

fGST(s,NORTH) = 1.0

Q(s’,) = 0 Q(s,NORTH) = +1
r + γ maxa’ Q (s’,a’) = – 500 + 0

difference = –501
wDOT 4.0 + [–501]0.5

wGST –1.0 + [–501]1.0

a = NORTH
r = –500

Convergence*

▪ Let VL be the closest linear approximation to V*.

▪ TD learning with a linear function approximator converges to
some V that is pretty close to VL

▪ Q-learning with a linear function approximator may diverge

▪ With much more complicated update rules, stronger
convergence results can be proved – even for nonlinear function
approximators such as neural nets

23

Nonlinear function approximators

▪ We can still use the gradient-based update for any Qw:

▪ wi wi + [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a)] Qw(s,a)/wi

▪ Neural network error back-propagation already does this!

▪ Maybe we can get much better V or Q approximators using a
complicated neural net instead of a linear function

24

Backgammon

25

TDGammon

▪ 4-ply lookahead using V(s) trained from 1,500,000 games of self-play

▪ 3 hidden layers, ~100 units each

▪ Input: contents of each location plus several handcrafted features

▪ Experimental results:

▪ Plays approximately at parity with world champion

▪ Led to radical changes in the way humans play backgammon

26

DeepMind DQN

▪ Used a deep learning network to represent Q:

▪ Input is last 4 images (84x84 pixel values) plus score

▪ 49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro

27

28

29

Summary

▪ Exploration vs. exploitation

▪ Exploration guided by unfamiliarity and potential

▪ Appropriately designed bonuses tend to minimize regret

▪ Generalization allows RL to scale up to real problems

▪ Represent V or Q with parameterized functions

▪ Adjust parameters to reduce sample prediction error

