
Announcements

▪ Midterm next Monday (March 6) 8-10pm (more details++ on ed)



How to beat a superhuman Go program

White: Kellin Pelrine (~2300)

Black:   JBXKata005 (~5200)

9-stone handicap



Q-learning as approximate Q-iteration

▪ Recall the definition of Q values:
▪ Q*(s,a) = expected return from doing a in s and then behaving optimally  

V(s) = maxaQ*(s,a) and *(s) = argmaxaQ*(s,a) 

▪ Bellman equation for Q values:
▪ Q*(s,a) = s’ T(s,a,s’)[R(s,a,s’) + γ maxa’ Q*(s’,a’) ]

▪ Approximate Bellman update for Q values:
▪ Q(s,a)  (1-)  Q(s,a)  +    [R(s,a,s’) + γmaxa’Q (s’,a’) ]

▪ We obtain a policy from learned Q(s,a), with no model!
▪ (No free lunch: Q(s,a) table is |A| times bigger than V(s) table)



Q-Learning

▪ Learn Q(s,a) values as you go

▪ Receive a sample (s,a,s’,r)

▪ Consider your old estimate: Q(s,a)

▪ Consider your new sample estimate:

sample = R(s,a,s’) + γ maxa’ Q(s’,a’) 

▪ Incorporate the new estimate into a running average:

Q(s,a)  (1-) Q(s,a) +    [sample]

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]



Q-Learning Properties

▪ Amazing result: Q-learning converges to optimal 
policy -- even if samples are generated from a 
suboptimal policy!

▪ This is called off-policy learning

▪ Caveats:

▪ You have to explore enough (eventually try every 
state/action pair infinitely often)

▪ You have to decrease the learning rate appropriately

▪ Technical requirements: t (t) =  , t 
2(t) < 

▪ Satisfied by: (t) = 1/t or (better)(t) = K/(K+t)



Summary

▪ RL solves MDPs via direct experience of transitions and rewards

▪ There are several schemes:

▪ Learn the MDP model and solve it 

▪ Learn V directly from sums of rewards, or by TD local adjustments

▪ Still need a model to make decisions by lookahead

▪ Learn Q by local Q-learning adjustments, use it directly to pick actions

▪ (and about 100 other variations)

▪ Big missing pieces: 

▪ How to explore without too much regret?

▪ How to scale this up to Tetris (1060), Go (10172), StarCraft (|A|=1026)?
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Reminder: Reinforcement Learning

▪ RL solves MDPs via direct experience of transitions and rewards

▪ There are several schemes:

▪ Learn the MDP model and solve it 

▪ Learn V directly from sums of rewards, or by TD local adjustments

▪ Still need a model to make decisions by lookahead

▪ Learn Q by local Q-learning adjustments, use it directly to pick actions

▪ (and about 100 other variations)

▪ Big missing pieces: 

▪ How to explore without too much regret?

▪ How to scale this up to Tetris (1060), Go (10172), StarCraft (|A|=1026)?



Exploration vs. Exploitation



Exploration vs exploitation

▪ Exploration: try new things

▪ Exploitation: do what’s best given what you’ve learned so far

▪ Key point: pure exploitation often gets stuck in a rut and never 
finds an optimal policy!
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Exploration method 1: -greedy

▪ -greedy exploration
▪ Every time step, flip a biased coin

▪ With (small) probability , act randomly

▪ With (large) probability 1-, act on current policy

▪ Properties of -greedy exploration
▪ Every s,a pair is tried infinitely often

▪ Does a lot of stupid things
▪ Jumping off a cliff lots of times to make sure it hurts

▪ Keeps doing stupid things for ever
▪ Decay  towards 0



Sensible exploration: Bandits

▪ Which one-armed bandit to try next?

▪ Most people would choose C > B > A > D

▪ Basic intuition: higher mean is better; more uncertainty is better

▪ Gittins (1979): rank arms by an index that depends only on the arm itself
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Tries:        1000

Winnings:   900

Tries:          100

Winnings:     90

Tries:             5

Winnings:      4

Tries:          100       

Winnings:       0
A B C D



Exploration Functions

▪ Exploration functions implement this tradeoff
▪ Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g., f(u,n) = u + k/n

▪ Regular Q-update:

▪ Q(s,a)  (1-)  Q(s,a)  +    [R(s,a,s’) + γ maxaQ (s’,a) ]

▪ Modified Q-update:

▪ Q(s,a)  (1-)  Q(s,a)  +    [R(s,a,s’) + γ maxa f(Q (s’,a),n(s’,a’)) ]

▪ Note: this propagates the “bonus” back to states that lead to 
unknown states as well!



Optimality and exploration
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Regret

▪ Regret measures the total 
cost of your youthful errors 
made while exploring and 
learning instead of 
behaving optimally

▪ Minimizing regret goes 
beyond learning to be 
optimal – it requires 
optimally learning to be 
optimal



Approximate Q-Learning



Generalizing Across States

▪ Basic Q-Learning keeps a table of all Q-values

▪ In realistic situations, we cannot possibly learn 
about every single state!
▪ Too many states to visit them all in training

▪ Too many states to hold the Q-tables in memory

▪ Instead, we want to generalize:
▪ Learn about some small number of training states from 

experience

▪ Generalize that experience to new, similar situations

▪ Can we apply some machine learning tools to do this?

[demo – RL pacman]



Example: Pacman

Let’s say we discover 
through experience 

that this state is bad:

In naïve q-learning, 
we know nothing 
about this state:

Or even this one!



Feature-Based Representations

▪ Describe a state using a vector of features
▪ Features are functions from states to real 

numbers (often 0/1) that capture important 
properties of the state

▪ Example features:
▪ Distance to closest ghost fGST

▪ Distance to closest dot
▪ Number of ghosts
▪ 1 / (distance to closest dot) fDOT

▪ Is Pacman in a tunnel? (0/1)
▪ …… etc.

▪ Can also describe a q-state (s, a) with features 
(e.g., action moves closer to food)



Linear Value Functions

▪ We can express V and Q (approximately) as weighted linear 
functions of feature values:
▪ Vw(s) = w1f1(s) + w2f2(s) + … + wnfn(s) 

▪ Qw(s,a) = w1f1(s,a) + w2f2(s,a) + … + wnfn(s,a) 

▪ With the wrong features, the best possible approximation may be terrible!

▪ But in practice we can compress a value function for chess (1043 states) down to 
about 30 weights and get decent play!!!



Updating a linear value function

▪ Original Q-learning rule tries to reduce prediction error at s,a:
▪ Q(s,a)  Q(s,a)  +    [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a) ]

▪ Instead, we update the weights to try to reduce the error at s,a:

▪ wi  wi +    [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a) ] Qw(s,a)/wi

=  wi +    [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a) ] fi(s,a)

▪ Qualitative justification:

▪ Pleasant surprise: increase weights on +ve features, decrease on –ve ones

▪ Unpleasant surprise: decrease weights on +ve features, increase on –ve ones
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Example: Q-Pacman

Q(s,a) = 4.0 fDOT(s,a) – 1.0 fGST(s,a)

Q(s,a) = 3.0 fDOT(s,a) – 3.0 fGST(s,a)

s’s
fDOT(s,NORTH) = 0.5

fGST(s,NORTH) = 1.0

Q(s’,) = 0 Q(s,NORTH) = +1
r + γ maxa’ Q (s’,a’) = – 500 + 0  

difference = –501
wDOT  4.0 + [–501]0.5

wGST  –1.0 + [–501]1.0

a = NORTH
r = –500



Convergence*

▪ Let VL be the closest linear approximation to V*. 

▪ TD learning with a linear function approximator converges to 
some V that is pretty close to VL

▪ Q-learning with a linear function approximator may diverge

▪ With much more complicated update rules, stronger 
convergence results can be proved – even for nonlinear function 
approximators such as neural nets
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Nonlinear function approximators

▪ We can still use the gradient-based update for any Qw:

▪ wi  wi +    [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a) ] Qw(s,a)/wi

▪ Neural network error back-propagation already does this!

▪ Maybe we can get much better V or Q approximators using a 
complicated neural net instead of a linear function
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Backgammon
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TDGammon

▪ 4-ply lookahead using V(s) trained from 1,500,000 games of self-play

▪ 3 hidden layers, ~100 units each

▪ Input: contents of each location plus several handcrafted features

▪ Experimental results:

▪ Plays approximately at parity with world champion

▪ Led to radical changes in the way humans play backgammon
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DeepMind DQN

▪ Used a deep learning network to represent Q:

▪ Input is last 4 images (84x84 pixel values) plus score

▪ 49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro
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Summary

▪ Exploration vs. exploitation

▪ Exploration guided by unfamiliarity and potential

▪ Appropriately designed bonuses tend to minimize regret

▪ Generalization allows RL to scale up to real problems

▪ Represent V or Q with parameterized functions

▪ Adjust parameters to reduce sample prediction error


